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Indonesia, as a maritime country, positions the blue economy as a 
cornerstone in the 2025–2045 National Long-Term Development Plan 
(RPJPN) to support sustainable economic growth, particularly 
through the development of the fisheries sector and marine tourism. 
This study aims to construct a Blue Economy Index (BEI) at the 
district/city level and identify its key determinants using the 
Regression Weighted Geographic and Temporal Multiscale (MGTWR) 
method. The BEI is based on environmental, social, and economic 
dimensions using data from 2020 to 2022 across 154 districts/cities on 
Sumatra Island. The analysis incorporates 14 predictor variables 
grouped into four dimensions and selected through Group LASSO 
and Elastic Net methods. The best-performing model is the RTGTM 
with Group LASSO variable selection and a Gaussian kernel function, 
yielding an 𝑅2 of 30.71% and an AIC of 1377.52. The social dimension 
contributes most to the BEI, while Medan City and Subulussalam City 
consistently record the highest and lowest scores. Significant variables 
influencing BEI include population factors (number of sub-districts, 
total population, sex ratio), education factors (number of senior high 
schools and vocational schools), and environmental indicators 
(protected drinking water sources and sanitation access). These 
findings underscore the importance of multi-dimensional, spatial, and 
temporal approaches in evaluating and advancing blue economy 
policies at the regional level. 
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INTRODUCTION 

Blue economy is a development concept that focuses on the sustainable utilization of 
marine resources to support economic growth, community welfare, and environmental 
sustainability (Martínez-Vázquez et al., 2021; Phang et al., 2023; Wuwung et al., 2022). Blue 
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economy mapping is needed to identify the potential and challenges in its management. 
Indonesia, as a maritime country, has great potential, but its utilization is uneven. The Indonesia 
Blue Economy Index (IBEI) shows that Sumatra Island is still lagging behind with an average 
score of 40.43, far below East Java, which reached 87.36, despite Sumatra contributing 22.01% to 
national GDP in 2023. This shows the need for better mapping to optimize the potential of the 
blue economy in a sustainable manner.  

Blue economy measurement tools play an important role in assessing the sustainability of 
marine resource utilization in various regions. ARISE+ has developed the IBEI with three main 
dimensions: environmental, economic, and social to measure blue economy performance at the 
provincial level (Kementerian PPN, 2023). The IBEI assists the government and stakeholders in 
comparing blue economy implementation between regions in a more structured manner. 
However, a more detailed measurement tool to assess blue economy development at the local 
level is still not available. Therefore, a Blue Economy Index (BEI) will be developed that adopts 
the IBEI dimensions and uses the same calculation method as the Human Development Index 
(HDI) in order to provide a more accurate picture of the condition of the blue economy at the 
local level. 

Spatial modeling is essential in the blue economy to understand the distribution of potential 
and challenges across regions. However, traditional spatial modeling approaches are often static 
and do not account for changes over time. Previous research, such as Aghnyn et al. (2024), applied 
Statistical Downscaling (SD) and Integrated Nested Laplace Approximation (INLA) to map the 
blue economy, but these results were limited to global regressions that failed to capture local 
variations and temporal dynamics. Until now, few studies have applied spatio-temporal 
modeling, despite the fact that this method allows for the simultaneous analysis of changes in the 
blue economy in both space and time. Christina et al. (2025) made an important contribution by 
applying spatio-temporal modeling to analyze changes in the blue economy, although its 
application remains limited in terms of scope and local level. Therefore, a more accurate spatio-
temporal approach is needed to fully understand the dynamics of the blue economy and map its 
potential at the local level. This research extends the application of spatio-temporal modeling 
further by using MGTWR, which enables a deeper analysis of changes in the blue economy at the 
regional and local levels, providing more precise insights into spatial and temporal dynamics. 

Geographically Weighted Regression (GWR) is used in spatial modelling with kernel 
functions and bandwidth to capture local variations (Cellmer et al., 2020; Wang et al., 2020). 
Kernel functions such as Gaussian, Uniform, Bisquare, and Exponential assign weights based on 
distance from the observation point, allowing the model to emphasize the influence of nearby 
data and reduce the impact of data farther away. Bandwidth regulates the extent of this influence. 
A smaller bandwidth isolates the influence to a smaller area, while a larger bandwidth expands 
the scope of influence. This enables the model to dynamically capture local relationships between 
variables, which is crucial in analyzing the blue economy at the regional level. However, the 
traditional GWR model uses a single bandwidth for all variables, which means it cannot capture 
differences in the degree of influence that different variables might have in different locations. 
For example, the impact of marine resources on the blue economy may vary between coastal 
regions and those further inland. Geographically and Temporally Weighted Regression (GTWR) 
adds a time dimension to account for changes in the blue economy over time, but it still uses a 
single bandwidth for all variables (Liu & Dong, 2021; Zhang et al., 2019). Multiscale 
Geographically and Temporally Weighted Regression (MGTWR), which is used in this research, 
allows each variable to have a flexible bandwidth, providing greater flexibility in capturing 
changes across different locations and time periods (Liu et al., 2021). Kernel functions are crucial 
in spatial modeling because they determine the weights assigned to each observation based on 
proximity, which directly influences how local variations are captured. These kernel functions, 
such as Gaussian, Uniform, and Exponential, are essential in emphasizing relevant spatial 
relationships by ensuring that observations closer to the center of the analysis have more 
influence, while distant observations have less impact. Without the proper use of kernel 
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functions, the model would fail to reflect the local dynamics accurately, which is essential when 
analyzing regional systems like the blue economy. However, in the study by Wu et al. (2019), the 
kernel types used in MGTWR are not specified, making it difficult to gain insights regarding the 
choice and comparison of kernels. The absence of this detail limits our understanding of how 
different kernel types may influence the results. Our research aims to fill this gap by using flexible 
bandwidth for each variable, allowing for a more detailed and accurate model of spatial and 
temporal dynamics in the blue economy. By comparing kernel types, we can better understand 
their impact on the model and improve the robustness of our findings. 

Multicollinearity in regression causes parameter estimates to be unstable, so a variable 
selection method is required (Chan et al., 2022; Oghenekevwe Etaga et al., 2021). Least Absolute 
Shrinkage and Selection Operator (LASSO) is used to select variables by adding an L1 penalty, 
which can shrink the coefficient to zero (Aheto et al., 2021; Emmert-Streib & Dehmer, 2019). 
However, LASSO can only select one variable in a group of highly correlated variables, so it may 
ignore other variables that are also influential. Group LASSO and Elastic Net were developed to 
overcome the limitations of LASSO in variable selection. Group LASSO maintains a group of 
interrelated variables, while Elastic Net combines L1 and L2 penalties to be more flexible in 
selecting highly correlated variables so as to reduce bias due to multicollinearity (Altelbany, 2021; 
Bastiaan et al., 2022; Huang et al., 2024). This study aims to calculate the BEI and make it a 
response variable, different from previous studies that have not modeled BEI explicitly. This 
research will select variables that affect BEI using Group LASSO and Elastic Net before modelling 
it with MGTWR, which is then applied with a variety of kernels (Gaussian, Uniform, Bisquare, 
and Exponential) to capture spatial and temporal variations more accurately. 

The next section of this paper will describe the dataset used for the study, calculate the blue 
economy index, select variables with Group LASSO and Elastic Net, determine kernel variation, 
model GTWR, determine the spatio-temporal distance function, and model MGTWR in Section 
2. Section 3 will present the BEI results, variable selection results, assumption tests, model 
comparison, and mapping. Section 4 will provide conclusions.  

 

METHOD 

The first step in this research is the collection of variables that will be used to construct the 
Blue Economy Index (BEI), along with the identification of variables that may influence the BEI. 
This index will be developed using an approach similar to the Human Development Index (HDI) 
calculation, incorporating environmental, economic, and social dimensions. Once the BEI 
calculation is completed, the resulting BEI values will be used as the response variable in the 
analysis model. Subsequently, the next step involves performing variable selection on the 
relevant variables to identify those that significantly affect the BEI. This selection process utilizes 
Group LASSO and Elastic Net techniques to reduce multicollinearity among the variables and 
select those that have a significant impact on the BEI. Figure 1 illustrates the methodology 
flowchart that outlines the steps involved in the analysis process. 

After the variable selection stage, the subsequent step involves modeling using Multiscale 
Geographically and Temporally Weighted Regression (MGTWR), which accounts for both spatial 
and temporal variations. This modeling process employs various kernel functions (such as 
Uniform, Gaussian, Bisquare, and Exponential) to capture the relationships between variables at 
different locations and times. With this approach, the model is expected to provide a more 
accurate representation of the dynamics of the blue economy affecting development in Sumatra. 
The final step involves result analysis, which identifies significant variables that contribute to the  
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BEI, as well as the BEI distribution map that illustrates variations across districts/cities during 
the 2020-2022 period.  

 

Dataset 

This research analyzes spatio-temporal data and calculates the index with a statistical 
approach. Spatio-temporal data has the unique characteristic of combining information on 
geographic location and time, allowing the analysis of relationships between variables in the 
context of space and time. This data includes response variables, predictor variables, subjects 
(such as place names or individuals), geographical coordinates, and time spans. This study takes 
the object of 154 regencies/cities in 10 provinces located on the island of Sumatra in the period 
2020-2022 with data sourced from Statistic Indonesia (SI), available at 
https://www.bps.go.id/id; Ministry of Tourism and Creative Economy (Kemenparekraf), 
available at https://satudata.kemenparekraf.go.id/; National Waste Management Information 
System (NWMIS), available at https://sipsn.menlhk.go.id/sipsn/; and Ministry of Marine 
Affairs and Fisheries (KKP) of the Republic of Indonesia, available at 
https://statistik.kkp.go.id/home.php. Based on these data, this study calculates the BEI and 
analyzes the factors that influence the BEI at the district/city level on the island of Sumatra. The 
variables that will be used in constructing the BEI response variable and predictor variables in 
modelling the BEI are shown in Table 1 and Table 2. Sumatra shapefile data format is also used 

to view the geographic information system obtained from https://geosai.my.id/.  

Table 1. Blue Economy Index Composing Variables 

No Descriptions Pillars 

1 Land Area for Quiet Water Ponds Enlargement Cultivation 

Environment 

2 Land Area of Freshwater Hatchery Cultivation 
3 Annual Waste Generation 
4 Annual Waste Management Amount 
5 Annual Waste Recycling Amount 
6 Percentage Distribution of Households with PLN Electric Lighting Sources 
7 Percentage Distribution of Households with Non-PLN Electric Lighting Sources 
8 Percentage Distribution of Households with Non-Electric Lighting Sources 

9 Freshwater Hatchery Aquaculture Fish Production Volume 

Economy 
10 Quiet Water Ponds Enlargement Aquaculture Fish Production Volume 
11 Inland Public Waters Capture Fishery Fish Production Volume 

12 Freshwater Hatchery Aquaculture Households 

Figure 1. Research Methodology for the Development and Modelling of the BEI 

https://www.bps.go.id/id
https://satudata.kemenparekraf.go.id/
https://sipsn.menlhk.go.id/sipsn/
https://statistik.kkp.go.id/home.php
https://geosai.my.id/
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No Descriptions Pillars 

13 Quiet Water Ponds Enlargement Aquaculture Households 

 

14 Sea Capture Fishery Households 
15 Inland Public Waters Capture Fishery Households 
16 Number of Sea Business Vessels 
17 Number of Inland Public Waters Business Vessels 
18 Micro and Small Fish Processing Units 

19 Freshwater Hatchery Aquaculture Fish Production Value 
20 Quiet Water Ponds Enlargement Aquaculture Fish Production Value 
21 Inland Public Waters Capture Fishery Fish Production Value 
22 Number of National Tourist Trips by Regency/City of Origin 
23 Number of National Tourist Trips by Regency/City of Destination 

24 Number of Quiet Water Ponds Enlargement Aquaculture Fishermen 

Social 

25 Number of Freshwater Hatchery Aquaculture Fishermen 

26 Number of Sea Capture Fishery Fishermen 

27 Number of Inland Public Waters Capture Fishery Fishermen 

28 Open Unemployment Rate 

29 Labor Force Participation Rate 

30 Percentage of Poor Population 

31 Percentage of Population with PBI BPJS Health Insurance 

32 Percentage of Population with Non PBI BPJS Health Insurance 

33 Percentage of Population with Jamkesmas Health Insurance 

34 Percentage of Population with Private Health Insurance 

35 Percentage of Population with Company Health Insurance 

36 Percentage of Population with Access to Adequate Drinking Water Sources 

37 Number of High School Students Under the Ministry of Education and Culture 

38 
Number of Vocational School Students Under the Ministry of Education and 

Culture 

 
Table 2. Predictor Variables for BEI Modelling 

No Variables Descriptions Dimensions 

1 𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡 Number of sub-districts 

Population 

2 𝑋𝑣𝑖𝑙𝑙𝑎𝑔𝑒  Number of Villages 

3 𝑋𝑝𝑜𝑝 Total Population (thousand) 
4 𝑋𝑟𝑎𝑡𝑖𝑜 Sex Ratio 
5 𝑋𝑝𝑜𝑜𝑟 Number of Poor People (thousand) 

6 𝑋𝐻𝐷𝐼 Human Development Index 
7 𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙 Number of High Schools under the Ministry of 

Education 
Education 

8 𝑋𝑣𝑜𝑐𝑠𝑐ℎ𝑜𝑜𝑙 Number of Vocational Schools under the Ministry of 
Education 

9 𝑋𝑝𝑢𝑚𝑝𝑒𝑑 Percentage Distribution of Households with Pumped 
Drinking Water Source 

Environment 

10 𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑 Percentage Distribution of Households with Drinking 
Water Sources of Bottled Water 

11 𝑋𝑤𝑒𝑙𝑙 Percentage Distribution of Households with Protected 
Well Drinking Water Sources 

12 𝑋𝑠𝑎𝑛𝑖𝑡𝑎𝑡𝑖𝑜𝑛 Percentage of Households with Access to Adequate 
Sanitation 

13 𝑋𝑓𝑜𝑜𝑑 Average Monthly Per Capita Expenditure on Food 
Economy 14 𝑋𝑛𝑜𝑛𝑓𝑜𝑜𝑑 Average Monthly Expenditure per Capita on Non-Food 

Items 
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Table 1 presents the components of the BEI, structured around three main pillars: 
environment, economy, and social, each further divided into several sub-pillars. In total, 38 
variables contribute to the calculation of the BEI. The social pillar includes variables related to 
human maritime resource welfare, health, and education. The environmental pillar covers marine 
resources and energy, while the economic pillar includes tourism, trade, industry, and fish catch. 
Table 2 shows the 14 predictor variables across four dimensions used in the MGTWR modeling 
approach to analyze the factors influencing the BEI. These predictor variables will undergo 
selection using two distinct methods: Group LASSO and Elastic Net, both designed to identify 
the most relevant variables influencing the BEI. 

Blue Economy Index Calculation 
This BEI calculation will adopt the calculation conducted by the United Nations 

Development Programme (UNDP) in calculating the HDI. The calculation of the BEI value will 
be explained in several steps as follows. 

 
Stage 1. Data normalization using min-max. Normalization is performed so that the variable 
values 𝑥𝑖𝑗  have a uniform scale within each dimension. This process ensures that unit differences 

between variables do not affect the analysis results. The normalized values are expressed as 𝑥𝑖𝑗
′  

using the following formula (Henderi, 2021): 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−min(𝑥𝑖𝑗)

min(𝑥𝑖𝑗)−max(𝑥𝑖𝑗)
  (1) 

Stage 2. Dimensional index calculated by arithmetic mean. The 𝐼𝑗 dimension index represents the 

average value of the normalized variables in one particular dimension. This value shows the 
general trend of the data after the normalization process. This index is calculated using the 
following formula:  

  𝐼𝑗 =
∑ 𝑥𝑖𝑗

′𝑛
𝑖=1

𝑛
  (2) 

Stage 3. Overall index calculated by geometric mean. The overall index reflects the combination 
of all dimensions using the geometric mean method. This approach ensures that each dimension 
has a balanced influence on the final result. The index is calculated using the following formula: 

  𝐵𝐸𝐼 = (∏ 𝐼𝑗
𝑛
𝑗=1 )

1

𝑛 × 100  (3) 

This approach strengthens the credibility of the BEI by aligning it with international standards 
like the Human Development Index. By applying both arithmetic and geometric means, it ensures 
each dimension contributes fairly and prevents any single aspect from dominating the final score. 
Policymakers can actively use the BEI to assess regional performance, set development priorities, 
and track progress in building a sustainable and inclusive blue economy across Indonesia’s 
maritime regions. 

Variable Selection Method 
Group Least Absolute Shrinkage Selection Operator 

In statistical modeling, variable selection is crucial, especially when the dataset includes 
many correlated or irrelevant predictors. The goal is to improve model accuracy, reduce 
complexity, and enhance interpretability. This process starts with Multiple Linear Regression 
(MLR), which assumes a linear relationship between the dependent variable and predictors (Shao 
& Qin, 2024). The model for MLR is written as:  
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  𝑦𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗 + 𝜀𝑖
𝑝
𝑗=1   (4) 

where 𝑦𝑖 represents the response value for the 𝑖-th sample, 𝑥𝑖𝑗  is the value of the 𝑗-th predictor 

variable, 𝛽𝑗 is the regression coefficient indicating the influence of predictor 𝑗, and 𝜀𝑖 is the error 

term assumed to follow a normal distribution with mean zero and constant variance, 𝜀𝑖~𝑁(0, 𝜎2). 
When expressed in matrix form, the model becomes: 

  𝑦 = 𝑋𝛽 + 𝜀  (5) 

where, 𝑋 is the matrix of predictor variables, and 𝛽 is the vector of unknown regression 
coefficients that need to be estimated. The goal is to minimize the residual sum of squares. The 
traditional method is Ordinary Least Squares (OLS), where the coefficients are estimated by (Shin 
et al., 2021): 

  𝛽̂𝑂𝐿𝑆 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚  (6) 

However, when the matrix 𝑋𝑇𝑋 is not invertible due to multicollinearity, Least Absolute 
Shrinkage and Selection Operator (LASSO) is used. LASSO adds an L1-norm penalty to the OLS 
objective, shrinking the coefficients toward zero. The LASSO optimization problem is formulated 
as (Khattak et al., 2021): 

  𝛽̂𝐿1 = 𝑎𝑟𝑔 𝑚𝑖𝑛 {
1

2𝑛
∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2
+ 𝜆‖𝛽‖1

𝑛
𝑖=1 } (7) 

where, 𝜆 controls the regularization strength. The optimal 𝜆 is chosen using Cross-Validation 
(CV), which minimizes prediction error (Takano & Miyashiro, 2020): 

  𝐶𝑉(𝜆) =
1

𝐾
∑ 𝑒(𝜆)𝑘

𝐾
𝑘=1  (8) 

While LASSO handles large predictor sets, it treats each predictor individually. Group LASSO 
addresses this limitation by penalizing entire groups of related predictors, ensuring they are 
selected or discarded together. The Group LASSO objective is (Li et al., 2020): 

𝛽̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛 {
1

2𝑛
‖𝑦 − ∑ 𝑋𝑔𝛽𝑔

𝐺
𝑔=1 ‖

2

2
+ 𝜆 ∑ √𝑝𝑔‖𝛽𝑔‖

2
𝐺
𝑔=1 }  (9) 

In this formulation, 𝑋𝑔 represents the matrix of predictors within group 𝑔, 𝛽𝑔 is the vector of 

coefficients for group 𝑔, and 𝑝𝑔 is the number of predictors in group 𝑔. The term √𝑝𝑔 adjusts for 

the size of each group, ensuring that larger groups are appropriately penalized. This method 
allows for a more structured selection process, where entire groups of related variables are chosen 
or discarded based on their collective importance. Group LASSO is particularly valuable when 
predictors come from natural groupings, as it preserves the interrelationships between variables 
within each group, ensuring that the underlying structure of the data is respected. 

Elastic Net 
Elastic Net combines the strengths of LASSO and Ridge Regression to address issues with 

correlated predictors. While LASSO can perform variable selection by shrinking some coefficients 
to zero, it becomes unstable with highly correlated predictors, potentially excluding important 
variables. Elastic Net overcomes this by combining the L1 penalty (from LASSO) with the L2 
penalty (from Ridge Regression), handling multicollinearity effectively and preserving model 
stability (Altelbany, 2021; Araveeporn, 2021; Tay et al., 2023). The objective function for Elastic 
Net is as follows: 
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𝛽̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛 {
1

2𝑛
‖𝑦 − 𝑋𝛽‖2

2 + 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2
2}    (10) 

where, the first term in the Elastic Net objective function, 
1

2𝑛
‖𝑦 − 𝑋𝛽‖2

2 represents the residual 

sum of squares (RSS), which measures the difference between the observed values 𝑦 and the 
predicted values 𝑋𝛽. The RSS reflects how well the model fits the data, with smaller values 
indicating a better fit (Sloboda et al., 2023). The second term, 𝜆1‖𝛽‖1, is the L1 penalty applied to 
the coefficients 𝛽𝑗. The L1 penalty encourages sparsity in the model by shrinking some of the 

coefficients to zero (Gollamandala & Kampa, 2021). This results in the selection of only the most 
important variables, effectively performing variable selection. As a result, less relevant predictors 
are excluded from the model, leading to a simpler and more interpretable solution. The third 
term, 𝜆2‖𝛽‖2

2 is the L2 penalty, which helps stabilize the model. The L2 penalty reduces the impact 
of correlated predictors by shrinking their coefficients toward zero, but unlike the L1 penalty, it 
does not set them exactly to zero. This ensures that the coefficients of correlated predictors are 
scaled down smoothly, rather than eliminated entirely, providing a balance between variable 
selection and model stability (Ren et al., 2023). 

The Elastic Net penalty combines these two regularization terms, enabling the model to 
reduce the influence of correlated predictors while performing effective variable selection. The 
balance between the L1 and L2 penalties is controlled by a parameter 𝛼, defined as: 

  𝛼 =
𝜆1

𝜆1+𝜆2
 (11) 

when, 𝛼 = 1, the model behaves like LASSO (only L1 penalty), and when 𝛼 = 0, it behaves like 
Ridge Regression (only L2 penalty). This allows Elastic Net to adapt to different situations based 
on the dataset's characteristics. The parameters 𝜆1 and 𝜆2 control the strength of the L1 and L2 
penalties, respectively, and their optimal values are typically selected through CV. CV involves 
testing different values of 𝜆1 and 𝜆2 to identify the combination that minimizes the prediction 
error. 

Multiscale Geographically and Temporally Weighted Regression 
Geographically Weighted Regression (GWR) is an extension of Ordinary Least Squares 

(OLS) regression, designed to handle spatial heterogeneity (Cellmer et al., 2020). Unlike 
traditional regression, GWR allows relationships between predictors and the response to vary 
spatially. The general form of GWR is: 

  𝑦𝑖 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗 + 𝜖𝑖
𝑘
𝑗=1 , 𝑖 = 1, … , 𝑛    (12) 

where, 𝑦𝑖 represents the observed response at location 𝑖, 𝛽0 is the intercept, 𝑥𝑖𝑗  is the 𝑗-th predictor 

at location 𝑖, and 𝛽𝑗 is the local coefficient for predictor 𝑗 at location 𝑖, while 𝜀𝑖 is the residual at 

location 𝑖. 
The coefficient 𝛽𝑗 are estimated using OLS with a spatial weight matrix 𝑊. The weight 

matrix 𝑊 is constructed using a kernel function based on the distance between locations. The 
model parameters are then estimated by: 

  𝛽̂𝑖 = [𝑋𝑇𝑊𝑖𝑋]−1𝑋𝑇𝑊𝑖𝑦 (13) 

where, 𝑋 is the matrix of predictor variables; 𝑊 is the spatial weight matrix, reflecting the distance 
between location 𝑖 and all other locations; 𝑦 is the vector of observed responses. 

One limitation of GWR is that it assumes a fixed bandwidth, or spatial scale, for all 
locations, which may not be appropriate when the spatial relationship between variables changes 
at different locations Multiscale Geographically Weighted Regression (MGWR) addresses this by 
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allowing the bandwidth to vary locally, optimizing the bandwidth for each location using the 
backfitting algorithm (Jo & Kim, 2022). The general form of the MGWR model is: 

  𝑦𝑖 = 𝑏𝑤0(𝛽0𝑖) + ∑ 𝑏𝑤𝑗(𝛽𝑖𝑗𝑥𝑖𝑗)  + 𝜖𝑖
𝑘
𝑗=1 , 𝑖 = 1, … , 𝑛  (14) 

where, 𝑏𝑤0, 𝑏𝑤1,…., 𝑏𝑤𝑘 are the varying bandwidths for each model component. The MGWR 
model can also be written in Generalized Additive Model (GAM) form as:  

  𝑦 = 𝑓𝑏𝑤0 
(𝛽0𝑖) + ∑ 𝑓𝑏𝑤𝑘

(𝑋𝑘) + 𝜖𝑖
𝑘
𝑗=1 , 𝑖 = 1, … , 𝑛 (15) 

where, 𝑓𝑏𝑤0 
, 𝑓𝑏𝑤1 

,…., 𝑓𝑏𝑤𝑘 
 are smoothing functions applied to predictors and 𝑏𝑤𝑗 are 

bandwidths for each predictor, optimized to minimize residuals. The bandwidths are calculated 
as: 

𝐴𝑘 = (

𝑥1𝑘(𝑋𝑘
𝑇𝑊1𝑋𝑘)

−1
𝑋𝑘

𝑇𝑊1

⋮

𝑥𝑛𝑘(𝑋𝑘
𝑇𝑊𝑛𝑋𝑘)

−1
𝑋𝑘

𝑇 𝑊𝑛

)

𝑛×𝑛

 (16) 

The covariance matrix of the estimated parameters is given by: 

  𝐶𝑖 = [𝑋𝑇𝑊𝑖𝑋]−1𝑋𝑇𝑊𝑖  (17) 

where, 𝐶𝑖 is the variance-covariance matrix for the estimated coefficients at location 𝑖. The 
standard error of the estimated coefficients is calculated as:  

  𝑉𝑖 = 𝐶𝑖𝐶𝑖
𝑇𝜎̂2  (18) 

where, 𝜎̂2 is the estimated variance of the residuals. 
The backfitting process in MGWR begins by setting initial values for the local parameters 

and iterating to converge these values. Convergence is achieved when the change in the RSS 
between iterations is less than a specified threshold, typically 10−5. The Score of Change (SOC) 
criterion is used to monitor convergence: 

  𝑆𝑂𝐶𝑅𝑆𝑆 =
𝑅𝑆𝑆𝑛𝑒𝑤−𝑅𝑆𝑆𝑜𝑙𝑑

𝑅𝑆𝑆𝑛𝑒𝑤
  (19) 

where the convergence is met when this value falls below the threshold. 
The model’s flexibility is also measured by the Effective Number of Parameters (ENP), which is 
calculated as the trace of the matrix 𝑅𝑘 for each predictor: 

  𝐸𝑁𝑃𝑘 = 𝑡𝑟(𝑅𝑘)  (20) 

where, 𝑅𝑘 is the spatial weight matrix for the 𝑘-th predictor. The total ENP for the model is the 
sum of the ENPs for all predictors: 

  𝐸𝑁𝑃𝑚𝑜𝑑𝑒𝑙 = ∑ 𝐸𝑁𝑃𝑘𝑘  (21) 

The final predicted values are obtained using the projection matrix 𝑆, which maps the observed 
data to the predicted values: 

  𝑦̂ = 𝑆𝑦 (22) 
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where 𝑆 is the projection matrix that gives the predicted values based on the model parameters. 
The model's coefficients are updated iteratively to ensure the best fit. 

Geographically and Temporally Weighted Regression (GTWR) is an extension of GWR that 
incorporates both spatial and temporal dimensions (Liu & Dong, 2021; Sifriyani et al., 2022). 
While GWR captures the spatial variability of relationships between predictor variables and the 
response variable, GTWR extends this idea by incorporating temporal variation, allowing the 
model to capture how the relationships change over both space and time. The general form of 
GTWR is given by: 

  𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖)𝑥𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖 (23) 

where, 𝑦𝑖 is the response variable at observation point 𝑖; 𝛽0(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) is the constant term at 
location (𝑢𝑖, 𝑣𝑖) and time (𝑡𝑖); 𝛽𝑘(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) is the regression coefficient for predictor 𝑘; 𝑥𝑖𝑗  is the 𝑗-

th predictor at observation 𝑖; 𝜀𝑖 is the error term at observation 𝑖. 
The coefficients are estimated using Weighted Least Squares (WLS) with a spatio-temporal 

weight matrix 𝑊. Based on spatial (𝑑𝑖𝑗
𝑠 ) and temporal (𝑑𝑖𝑗

𝑇 ) distances. The combined spatio-

temporal distance is: 

  (𝑑𝑖𝑗
𝑠𝑇)

2
= 𝜙𝑠 [(𝑢𝑖 − 𝑢𝑗)

2
+ (𝑣𝑖 − 𝑣𝑗)

2
] + 𝜙𝑇 [(𝑡𝑖 − 𝑡𝑗)

2
] (24) 

where, 𝜙𝑠 and 𝜙𝑇 are factors adjusting the influence of spatial and temporal distances. The 
geographic weights are computed as: 

   𝑤𝑖𝑗 = 𝑒𝑥𝑝 {− (
(𝑑𝑖𝑗

𝑠 )
2

𝑏𝑠
2 +

(𝑑𝑖𝑗
𝑇 )

2

𝑏𝑇
2 )} (25) 

where, 𝑏𝑠 is the spatial bandwidth and 𝑏𝑡 is the temporal bandwidth. These bandwidths control 
the extent to which observations at different locations and times influence each other. These 
bandwidths are optimized to improve model accuracy. 

Once the spatial and temporal weights are computed, the model parameters can be adjusted 
further. The 𝜏 parameter is used to either enhance or reduce the temporal effect relative to the 
spatial distance. The validation of the model is done by calculating the following: 

   (𝜏) = ∑ (𝑦𝑖 − 𝑦̂≠𝑖(𝜏))
2

𝑖  (26) 

with the spatial-temporal weights and bandwidths, the predicted values 𝑦̂𝑖 can be computed 
using the following formula: 

    𝑦̂ = [

𝑦̂1

𝑦̂2

⋮
𝑦̂𝑛

] = 𝑆𝑦 (27) 

This model allows for more accurate predictions by considering both spatial and temporal 
variations, capturing relationships that change over time and space. 

The kernel functions used in this method are essential for measuring the relationships 
between variables within the model. These kernels assign weights to data points based on the 
distance between them, considering both spatial and temporal variability (Al-Hasani et al., 2021). 
Table 3 shows the kernel functions used in the study, including: Gaussian, Uniform, Bisquare, 
and Exponential. Each kernel function provides a different weighting scheme depending on the 
distance between the data points. 
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Table 3. Kernel Function 

Function Specifications 

Gaussian 𝑤𝑖𝑗 = exp (−
1

2
(

|dij
sT|

𝑏
)

2

) (28) 

Uniform 𝑤𝑖𝑗 = {
1,  if 𝑑𝑖𝑗 ≤ 𝑏

0,  otherwise
 (29) 

Bisquare 𝑤𝑖𝑗 = {(1 − (
|dij

sT|

b
)

2

) , if dij ≤ b 

0, otherwise

 (30) 

Exponential 𝑤𝑖𝑗 = exp (− (
|dij

sT|

𝑏
)) (31) 

 
The Multiscale Geographically and Temporally Weighted Regression (MGTWR) model is 

an advanced extension of both GWR and GTWR (Liu et al., 2021; Wu et al., 2019). It incorporates 
both spatial and temporal heterogeneity in a more flexible way by considering multiple scales of 
spatial variation and temporal dynamics. The MGTWR model is expressed as follows: 

      𝑌 = 𝛽𝑏𝑤𝑡0𝑠0
+ 𝛽𝑏𝑤𝑡1𝑠1

⨂𝑥1 + ⋯ + 𝛽𝑏𝑤𝑡𝑝𝑠𝑝
⨂𝑥𝑝 + 𝜀 (32) 

where, ⨂ is the matrix element-wise multiplication, and 𝑏𝑤𝑡𝑝𝑠𝑝 is the spatial and temporal 

bandwidth used for variable coefficient determination. The concept of the MGTWR backfitting 
algorithm is the same as that of MGWR. 

The backfitting algorithm is applied in MGTWR, where all additive terms are calculated 
iteratively. The error term is calculated as the difference between observed and predicted values 
and is minimized during each iteration: 

       𝜀 = 𝑦 − 𝑓0
0 − 𝑓1

1 − ⋯ − 𝑓𝑝
𝑝

 (33) 

The iterative process continues until the error reaches an acceptable level, with each iteration 
refining the model coefficients. This ensures that both spatial and temporal factors are considered 
optimally, improving the model’s predictive accuracy. 
 

RESULTS AND DISCUSSIONS 

This section discusses the steps in constructing the BEI and MGTWR models to identify 
predictor variables affecting the BEI. The pillars of the BEI are calculated using the arithmetic 
mean, while the BEI itself is computed using the geometric mean. After calculating the BEI, 
variable selection is performed on 14 predictor variables using Group LASSO and Elastic Net to 
identify the most influential variables. The MGTWR model is applied with different kernel 
weight functions (Uniform, Gaussian, Bisquare, and Exponential) using the selected variables 
from Group LASSO and Elastic Net to analyze their impact on BEI. Descriptive analysis of the 
BEI pillar indices is conducted before proceeding with the BEI construction. 

Formulation of Blue Economy Index 
The descriptive analysis of the BEI pillars in Sumatra from 2020 to 2022 shows significant 

variation across the regions. The Environmental pillar had a minimum value of 0.0095 in 2021 
and a maximum of 0.5006 in 2020, with the highest rate in 2020 at 0.1848. The Economic pillar 
showed a minimum of 0.0105 in 2020 and a maximum of 0.4107 in 2021, with the highest rate at 
0.0758 in 2022. The Social pillar ranged from a minimum of 0.1293 in 2020 to a maximum of 0.5558 
in 2022, with the highest rate at 0.2369 in 2021. These results underscore the importance of 
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addressing the factors affecting BEI to improve the overall quality of life across the regions. Table 
4 shows the detailed descriptive analysis of the BEI pillars for the years 2020 to 2022. 

Table 4. Descriptive Analysis of BEI Pillars 

Pillars Year Min Mean Max Std 

Environment 

2020 0,1297 0,1848 0,5006 0,0775 
2021 0,0095 0,0701 0,3334 0,0672 
2022 0,1284 0,1723 0,4245 0,0540 

Economic 

2020 0,0105 0,0847 0,4107 0,0672 
2021 0,0060 0,0689 0,3095 0,0574 
2022 0,0084 0,0758 0,3691 0,0595 

Social 

2020 0,1293 0,2338 0,4558 0,0524 
2021 0,1288 0,2269 0,5177 0,0533 
2022 0,1269 0,2336 0,4385 0,0524 

 
According to Table 4, the results of the BEI dimensioning show that the social pillar plays 

the most dominant role. The dominance of the social pillar in the BEI calculation reflects the 
population's dependence on fisheries and marine resources for livelihoods. After performing the 
descriptive analysis of the BEI pillars, we proceed to analyze the BEI  as a whole. Table 5 shows 
the BEI values for Sumatra's districts/cities from 2020 to 2022, revealing significant variation. The 
minimum value was 6.8683 in 2020, while the maximum reached 39.0204 in the same year. This 
analysis highlights the fluctuations in BEI values, reflecting regional and temporal differences 
across Sumatra. 

Table 5. Descriptive Analysis of the Blue Economy Index 

Year Min Mean Max Std 

2020 6,6863 14,5763 39,0204 5,4065 
2021 2,5448 9,2226 31,5204 5,0229 
2022 5,9987 13,7766 33,6480 5,1360 

Figure 2 illustrates the distribution of the BEI from 2020 to 2022 to make the results easier to 
visualize. The darker shades of blue indicate regions with the highest BEI values, while the lighter 
shades represent areas with lower BEI values. From 2020 to 2022, Medan City consistently had 
the highest BEI, while Subulussalam City consistently had the lowest. This visual helps highlight 
the spatial variations in BEI across Sumatra’s regions over the three years. 
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Medan City, as the capital of North Sumatra, consistently holds the highest BEI from 2020 

to 2022. This success results from better infrastructure and widespread access to public services, 
which drive the city's growth and competitiveness across various economic sectors (Safnul et al., 
2020). The local government's policies promoting investment and infrastructure development 
have been pivotal in improving the BEI. Social media platforms like Instagram and Twitter have 
also enhanced communication on infrastructure projects, fostering public engagement and 
ensuring that development policies meet the community's needs (Budi et al., 2023). 

Subulussalam in Aceh Province, on the other hand, consistently ranks lowest in the BEI 
during the same period. This is due to inadequate infrastructure, limited access to public services, 
and poor resource management, which hinder economic growth and reduce competitiveness 
(Tatang et al., 2021). ARISE+ calculations for 2022 show that Sumatra's BEI scores range between 

Figure 2. Distribution of the Blue Economy Index in Sumatra (2020-2022) 
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30 and 40. While Medan performs well, the overall blue economy management in Sumatra 
remains relatively low, reflecting challenges like underdeveloped infrastructure and 
unsustainable practices, especially in fisheries. To improve the BEI, effective policies for 
managing the blue economy, upgrading infrastructure, and enhancing access to public services 
are necessary. Overcoming these challenges requires a comprehensive and collaborative 
approach to foster long-term, sustainable growth and well-being for the people of Sumatra. 

After calculating the BEI, we will model it using MGTWR, beginning with variable selection 
through Group Lasso and Elastic Net. This approach will help identify the significant variables 
influencing BEI, with BEI serving as the core response variable in the model. 

Variable Selection Results 
This section presents the results of the variable selection process using Group LASSO and 

Elastic Net. The goal is to identify variables that significantly affect the BEI. Before selecting the 
variables, the researcher performed CV to determine the optimal penalty parameter (𝜆) for both 
methods, which minimizes prediction error (Oyedele, 2023). The selection of the number of folds 
is denoted by K, which has no strict rules. Commonly used K values in research are 5 or 10 (Liu 
et al., 2023). This study uses K=5 to analyse the log(𝜆) value that produces the lowest Mean 
Squared Error (MSE). Figure 3 shows the cross-validation results, helping to identify the best 
model configuration.  

 
Figure 3 shows the cross-validation results for both Group LASSO and Elastic Net methods. 

The visualization compares the relationship between log(𝜆) values and the MSE for each method. 
For Group LASSO, the best log(𝜆)  value that results in the smallest MSE is -1.0314, with an MSE 
of 1.0368. The red line represents the average MSE, which exhibits small fluctuations, indicating 
model stability across the tested range of 𝜆. The vertical dashed line indicates the optimal log(𝜆). 
Similarly, for Elastic Net, the best log(𝜆) value is -0.9425, yielding an MSE of 1.0251. The optimal 
log(𝜆) for Elastic Net is also marked on the graph. These results are used to select significant 
variables for inclusion in the final model, with the optimal 𝜆 values determining which variables 
to retain. 

Table 6. Variable Selection Results of Group LASSO and Elastic Net 

Method Variable Significant 

Group LASSO 
(GLASSO) 

𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡: Number of sub-districts 
𝑋𝑣𝑖𝑙𝑙𝑎𝑔𝑒 : Number of Villages 

𝑋𝑝𝑜𝑝: Total Population (thousand) 

𝑋𝑟𝑎𝑡𝑖𝑜: Sex Ratio 
𝑋𝑝𝑜𝑜𝑟: Number of Poor People (thousand) 

𝑋𝐻𝐷𝐼: Human Development Index 

Figure 3. Cross Validation Group LASSO and Elastic Net 
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Method Variable Significant 
𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙: Number of High Schools under the Ministry of Education 

𝑋𝑣𝑜𝑐𝑠𝑐ℎ𝑜𝑜𝑙: Number of Vocational Schools under the Ministry of Education 
𝑋𝑝𝑢𝑚𝑝𝑒𝑑: Percentage Distribution of Households with Pumped Drinking Water 

Source 
𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑: Percentage Distribution of Households with Drinking Water Sources of 

Bottled Water 
𝑋𝑤𝑒𝑙𝑙 : Percentage Distribution of Households with Protected Well Drinking Water 

Sources 
𝑋𝑠𝑎𝑛𝑖𝑡𝑎𝑡𝑖𝑜𝑛: Percentage of Households with Access to Adequate Sanitation 

Elastic Net 
(ENET) 

𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡: Number of sub-districts 
𝑋𝑝𝑜𝑝: Total Population (thousand) 

𝑋𝑝𝑜𝑜𝑟: Number of Poor People (thousand) 

𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙: Number of High Schools under the Ministry of Education 

𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑: Percentage Distribution of Households with Drinking Water Sources of 
Bottled Water 

𝑋𝑤𝑒𝑙𝑙 : Percentage Distribution of Households with Protected Well Drinking Water 
Sources 

 

Table 6 shows the significant variables selected through Group LASSO and Elastic Net 
methods. The results indicate that Group LASSO retains 12 variables, eliminating the Economy 
dimension. The significant dimensions retained by Group LASSO include Population, Education, 
and Environment. On the other hand, Elastic Net retains only 6 variables, which include the 
following: the number of sub-districts, total population, number of poor people, number of high 
schools under the Ministry of Education, percentage distribution of households with drinking 
water source of bottled water, and the percentage distribution of households with protected well 
drinking water sources. These selected variables will be used in subsequent modeling steps to 
understand their impact on the BEI. 

Classical Assumption Test 
This section presents the results of assumption tests following the MGTWR GLASSO and 

MGTWR ENET modeling to ensure the best model selection. The assumption tests include 
normality, heteroscedasticity, multicollinearity, Moran's I, and temporal heterogeneity tests (Ilori 
& Tanimowo, 2022; Ou et al., 2017; Podbregar et al., 2020; Rai et al., 2021). These tests ensure the 
model meets the necessary criteria for further analysis, such as normal distribution and constant 
errors. Additionally, the results of spatial, temporal, and spatio-temporal bandwidths provide 
insight into the interactions between variables in both spatial and temporal contexts. Table 7 
shows the results of the assumption tests for the MGTWR GLASSO and MGTWR ENET models. 
These assumption tests are crucial for determining the best model, ensuring that the selected 
model meets the necessary criteria for further analysis. 

 
Table 7. Model Assumption Test 

Test Kernel 
𝒑-value 

MGTWR GLASSO MGTWR ENET 

Normality Test (Kolmogorov Smirnov) 

Uniform 0,4192 0,2002 
Gaussian 0,0594 0,0000 
Bisquare 0,0000 0,0000 

Exponential 0,0362 0,0000 

Heteroscedasticity Test (Breusch-Pagan) 

Uniform 0,0656 0,0439 
Gaussian 0,5754 0,3407 
Bisquare 0,1561 0,1663 

Exponential 0,5056 0,3295 

Multicollinearity Test  It is shown in Table 8 
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Test Kernel 
𝒑-value 

MGTWR GLASSO MGTWR ENET 

Moran's I Test  It is shown in Table 9 

Temporal Heterogeneity Test  Boxplot in Figure 4 

 
Table 7 presents the assumption test results for the MGTWR GLASSO and MGTWR ENET 

models. The results show that MGTWR GLASSO with the Gaussian and Exponential kernels, as 
well as MGTWR ENET with the Uniform kernel, meet the normality assumption with 𝑝-value 
greater than 0.05, indicating a normal data distribution. Regarding heteroscedasticity, all kernels 
in MGTWR GLASSO satisfy the constant error assumption, with 𝑝-values greater than 0.05. 
However, for MGTWR ENET, the Uniform kernel does not meet the constant error assumption, 
as its p-value is less than 0.05, indicating the presence of heteroscedasticity. The results of the 
multicollinearity test can be found in Table 8. 
 

Table 8. Multicollinearity Test MGTWR GLASSO and MGTWR ENET 

Method Variable Significant VIF 

Group LASSO 

𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡 4,1657 
𝑋𝑣𝑖𝑙𝑙𝑎𝑔𝑒  3,048 

𝑋𝑝𝑜𝑝 10,3793 

𝑋𝑟𝑎𝑡𝑖𝑜 1,1948 
𝑋𝑝𝑜𝑜𝑟 5,4603 

𝑋𝐻𝐷𝐼 1,9913 
𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙 5,7330 

𝑋𝑣𝑜𝑐𝑠𝑐ℎ𝑜𝑜𝑙 7,1892 
𝑋𝑝𝑢𝑚𝑝𝑒𝑑 1,2542 

𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑 1,9587 
𝑋𝑤𝑒𝑙𝑙 1,4789 

𝑋𝑠𝑎𝑛𝑖𝑡𝑎𝑡𝑖𝑜𝑛 1,4057 

Elastic Net 

𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡 2,0860 
𝑋𝑝𝑜𝑝 6,1026 
𝑋𝑝𝑜𝑜𝑟 4,9710 

𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙 4,4650 

𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑 1,557 

𝑋𝑤𝑒𝑙𝑙 1,3219 

 
Table 8 shows the multicollinearity test results for the MGTWR GLASSO and MGTWR 

ENET models. Several variables selected by Group LASSO have VIF values above 10, indicating 
multicollinearity. This occurs because Group LASSO groups related variables within the same 
dimension, reducing the entire group rather than individual variables. In contrast, Elastic Net 
shows VIF values below 10 for all significant variables, indicating no multicollinearity. 

Table 9. Moran's I Test Results 

Year Moran’s I 

 GLASSO ENET 

2020 -0,0037 0,0057 
2021 0,0152 0,0343 
2022 -0,0132 -0,0022 

Table 9 shows the Moran's I test results. Positive values indicate spatial clustering, meaning 

that similar values are grouped together in space, while negative values suggest spatial 
dispersion, meaning that similar values are spread apart. This test helps identify the spatial 
autocorrelation present in the data, providing insights into how the variables are distributed 
across the study area. Figure 4 shows the boxplot for temporal heterogeneity of BEI from 2020 to 
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2022. The plot reveals fluctuations in BEI values across all three years, indicating variability over 
time. 

 

Table 10. Spatial Bandwidth (bw), Temporal Bandwidth (bw_ts), and Spatio-Temporal Scale (𝜏) for 
Uniform (U), Gaussian (G), Bisquare (B), and Exponential (E) Kernels 

Method Variable  
bws bw_ts 

U G B E U G B E 

MGTWR 
GLASSO 

𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡  7.1 18 18 18 5.7971 9.2338 9.2338 9,2338 
𝑋𝑣𝑖𝑙𝑙𝑎𝑔𝑒  7.1 15.2 18 18 5.7971 7.7974 9.2338 9.2338 

𝑋𝑝𝑜𝑝 7.1 18 18 18 5.7971 13.8054 9.2338 12.4212 

𝑋𝑟𝑎𝑡𝑖𝑜 7.1 18 18 18 5.7971 9.4868 9.2338 9.4868 
𝑋𝑝𝑜𝑜𝑟 7.1 18 18 18 5.7971 13.0586 9.2338 13.8054 

𝑋𝐻𝐷𝐼 7.1 18 18 18 5.7971 12.4212 9.2338 10.0623 

𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙 7.1 18 18 18 5.7971 9.2338 9.2338 9.4868 

𝑋𝑣𝑜𝑐𝑠𝑐ℎ𝑜𝑜𝑙 7.1 18 18 18 5.7971 13.0586 9.2338 13.8054 
𝑋𝑝𝑢𝑚𝑝𝑒𝑑 7.1 18 18 18 5.7971 13.0586 11.3842 13.0586 

𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑  7.1 18 18 18 5.7971 13.0586 9.2338 13.8054 
𝑋𝑤𝑒𝑙𝑙  7.1 18 18 18 5.7971 10.3923 10.9545 10.0623 

𝑋𝑠𝑎𝑛𝑖𝑡𝑎𝑡𝑖𝑜𝑛 7.1 18 18 18 5.7971 11.3842 9.2338 11.3842 

MGTWR 
ENET 

𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡  7.1 7 17.4 5,5 5.7971 3.5909 8.9260 2.8214 
𝑋𝑝𝑜𝑝 7.1 13 17.4 17.4 5.7971 29.0689 8.9260 38.9076 
𝑋𝑝𝑜𝑜𝑟 7.1 17.4 17.4 17.4 5.7971 17.4000 9.1706 10.0459 

𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙 7.1 17.4 17.4 17.4 5.7971 17.4000 9.7269 17.4000 

𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑  7.1 17.4 17.4 17.4 5.7971 10.5893 8.9260 9.4365 
𝑋𝑤𝑒𝑙𝑙  7.1 9 17.4 9 5.7971 20.1246 10,0459 20.1246 

Method Variable 
𝝉 

U G B E 

MGTWR 
GLASSO 

𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡  1.5 3.8 3.8 3.8 
𝑋𝑣𝑖𝑙𝑙𝑎𝑔𝑒  1.5 3.8 3.8 3.8 

𝑋𝑝𝑜𝑝 1.5 1.7 3.8 2.1 

𝑋𝑟𝑎𝑡𝑖𝑜 1.5 3.6 3.8 3.6 
𝑋𝑝𝑜𝑜𝑟 1.5 1.9 3.8 1.7 

𝑋𝐻𝐷𝐼 1.5 2.1 3.8 3.2 
𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙 1.5 3.8 3.8 3.6 

𝑋𝑣𝑜𝑐𝑠𝑐ℎ𝑜𝑜𝑙 1.5 1.9 3.8 1.7 
𝑋𝑝𝑢𝑚𝑝𝑒𝑑 1.5 1.9 2.5 1.9 

𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑  1.5 1.9 3.8 1.7 

𝑋𝑤𝑒𝑙𝑙  1.5 3 2.7 3.2 

𝑋𝑠𝑎𝑛𝑖𝑡𝑎𝑡𝑖𝑜𝑛 1.5 2.5 3.8 2.5 

𝑋𝑠𝑢𝑏𝑑𝑖𝑠𝑡  1.5 3.8 3.8 3.8 

Figure 4. Boxplot of Temporal Heterogeneity of BEI 
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Method Variable  
bws bw_ts 

U G B E U G B E 
MGTWR 

ENET 
𝑋𝑝𝑜𝑝 1.5 0.2 3.8 0.2 
𝑋𝑝𝑜𝑜𝑟 1.5 1 3.6 3 

𝑋ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙 1.5 1 3.2 1 

𝑋𝑏𝑜𝑡𝑡𝑙𝑒𝑑  1.5 2.7 3.8 3.4 

𝑋𝑤𝑒𝑙𝑙  1.5 0.2 3 0.2 

Table 10 presents the spatial bandwidth (bw), temporal bandwidth (bw_ts), and spatio-
temporal scale (𝜏) for the Uniform (U), Gaussian (G), Bisquare (B), and Exponential (E) kernels. 
Spatial bandwidth measures the influence of each location based on physical distance, while 
temporal bandwidth gauges the influence based on time. The spatio-temporal scale combines 
both spatial and temporal aspects, providing a more comprehensive understanding of variable 
interactions in both space and time. The values for each kernel represent how the model captures 
spatial and temporal dependencies, allowing for a more detailed analysis of the dynamics 
between variables across different locations and time periods. 

Model Comparison 
Diagnostic tests are performed to evaluate the performance of each proposed model. The 

𝑅2 value measures the proportion of variability explained by the model, with higher values 
indicating better fit. The Akaike Information Criterion (AIC) is used to compare models, where 
lower AIC values indicate better models with a penalty for complexity. Analyzing 𝑅2 and AIC 
values helps determine the best model, balancing fit and simplicity. The results of this analysis 
are shown in Table 11. 

Table 11. Model Comparison Based on 𝑅2 and AIC 

Model 
MGTWR GLASSO MGTWR ENET 

𝑹𝟐 AIC 𝑹𝟐 AIC 

Uniform 0.2263 1456.4245 0.1997 1460.6445 
Gaussian 0.3071 1377.5212 0.6779 1014.6825 
Bisquare 0.9033 907.4792 0.8743 957.6086 

Exponential 0.3514 1364.7681 0.6979 1011.8859 

Table 11 presents the 𝑅2 and AIC values for various models in the MGTWR GLASSO and 
MGTWR ENET analysis. The Bisquare approach shows the highest 𝑅2 value of 0.9033 and the 
lowest AIC value of 907.4792 for MGTWR GLASSO compared to other models. However, the 
highest 𝑅2 value from Bisquare does not meet the normality assumption, which is a key 
consideration in model selection. This study selects the MGTWR GLASSO model with the 
Gaussian kernel, as it satisfies the assumption tests and provides the best 𝑅2 and AIC values 
among the models that also meet the assumptions. The MGTWR GLASSO model with the 
Gaussian kernel has an 𝑅2 value of 0.3071 and an AIC value of 1377.5212. The 𝑅2 value of 0.3071 
indicates that approximately 30.71% of the data variation is explained by the model. The model 
selection is based on the principle that the reliability of the analysis results is more important than 
simply achieving the highest 𝑅2 value. 

After comparing the models, it is concluded that the best model is MGTWR GLASSO using 
the Gaussian kernel. A partial test is conducted to determine the significance of the variables, 
with the hypothesis defined as follows: 
𝐻0: 𝛽𝑘 = 0, for 𝑘 = 1, 2, … , 𝑝 (Variable 𝑘 is not significant)  
𝐻1: 𝛽𝑘 ≠ 0, for 𝑘 = 1, 2, … , 𝑝 (Variable 𝑘 is significant)  

The study involves 154 observations and 12 variables selected by Group LASSO. The 
degrees of freedom are 141, and the critical t-value for α = 0.05 is 1.9769. Significant variables are 
identified based on the t-statistic, where variables with t-values greater than 1.9769 or less than -
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1.9769 are considered significant. Table 12 shows the coefficients for Banda Aceh and Gayo Lues, 
with both regions consistently showing significant variables over the three-year period. 

Table 12. Significant Variable Coefficient Banda Aceh City and Gayo Lues. The Sign (*) Indicates that the 
Coefficient of the Variables is Significant to the BEI 

District/City Year 
Variable Coefficient (𝜷) 

𝑿𝒔𝒖𝒃𝒅𝒊𝒔𝒕 𝑿𝒗𝒊𝒍𝒍𝒂𝒈𝒆 𝑿𝒑𝒐𝒑 𝑿𝒓𝒂𝒕𝒊𝒐 𝑿𝒑𝒐𝒐𝒓 𝑿𝑯𝑫𝑰 

Banda Aceh 
City 

2020 -0,0056 -0,1207 -0,0432 0,5430* -0,0817 0,1953 

2021 0,0432 -0,0894 -0,1472 0,6053* -0,0765 0,1607 

2022 0,0557 -0,0584 -0,2252 0,5435* -0,0955 0,0611 

 𝑿𝒉𝒊𝒈𝒉𝒔𝒄𝒉𝒐𝒐𝒍 𝑿𝒗𝒐𝒄𝒔𝒄𝒉𝒐𝒐𝒍 𝑿𝒑𝒖𝒎𝒑𝒆𝒅 𝑿𝒃𝒐𝒕𝒕𝒍𝒆𝒅 𝑿𝒘𝒆𝒍𝒍 𝑿𝒔𝒂𝒏𝒊𝒕𝒂𝒕𝒊𝒐𝒏 

2020 0,1859 0,2505 -0,0566 -0,0089 0,0793 -0,1744 

2021 0,2311 0,1827 -0,1016 0,0296 0,0557 -0,1211 

2022 0,2502 0,1584 -0,0605 0,0383 0,0827 -0,1513 

Gayo Lues 

 𝑿𝒔𝒖𝒃𝒅𝒊𝒔𝒕 𝑿𝒗𝒊𝒍𝒍𝒂𝒈𝒆 𝑿𝒑𝒐𝒑 𝑿𝒓𝒂𝒕𝒊𝒐 𝑿𝒑𝒐𝒐𝒓 𝑿𝑯𝑫𝑰 

2020 -0,0841 -0,0786 0,0590 0,3633* -0,0124 0,1870 

2021 0,0678 -0,0084 -0,1741 0,3212* -0,0035 0,1384 

2022 0,0726 0,0041 -0,2739 0,2672 0,0095 -0,0133 

 𝑿𝒉𝒊𝒈𝒉𝒔𝒄𝒉𝒐𝒐𝒍 𝑿𝒗𝒐𝒄𝒔𝒄𝒉𝒐𝒐𝒍 𝑿𝒑𝒖𝒎𝒑𝒆𝒅 𝑿𝒃𝒐𝒕𝒕𝒍𝒆𝒅 𝑿𝒘𝒆𝒍𝒍 𝑿𝒔𝒂𝒏𝒊𝒕𝒂𝒕𝒊𝒐𝒏 

2020 0,2308 0,2789 0,0000 -0,1540 0,1482 -0,2207 

2021 0,2926* 0,1573 -0,0232 -0,0174 0,0999 -0,1747 

2022 0,3350* 0,0693 -0,0024 0,1485 0,0963 0,0003 

Table 12 shows the significant variable coefficients affecting the BEI in Banda Aceh City 

and Gayo Lues from 2020 to 2022. Variables marked with an asterisk (*) have a significant impact 
on BEI. The gender ratio has a positive correlation with BEI in both regions. In Banda Aceh, the 
gender ratio coefficient increased from 0.5430 in 2020 to 0.5435 in 2022, indicating that a higher 
gender ratio is linked to an increase in BEI. This suggests that the blue economy sectors, such as 
fisheries and maritime industries, which predominantly employ male workers, benefit from a 
more balanced or dominant gender ratio (Sohilauw et al., 2019). In Gayo Lues, the number of high 
schools also shows a positive correlation with BEI. The coefficient for high schools rose from 
0.2926 in 2021 to 0.3350 in 2022. An increase in high schools contributes to improving human 
resource quality, which, in turn, supports sustainable management of marine resources (Laheng 
et al., 2022). Access to secondary education helps the population better understand sustainable 
fishing practices and environmental management, essential for fostering a blue economy. These 
results demonstrate that socio-economic factors like gender balance and educational access 
significantly influence the growth of the blue economy. Therefore, policies that balance human 
resource development with marine ecosystem sustainability are crucial.  

Figure 5 presents a combined visualization of all significant variables across various regions 
for each year. This visualization helps in understanding the pattern of variable significance 
changes from year to year. A detailed analysis can be conducted to identify the factors influencing 
the BEI in different regions. The comparison of results across years reveals trends of increasing 
or decreasing significance of certain variables in specific regions. The color distribution on the 
map provides insights into the consistency of variable significance across regions. This 
information can serve as a foundation for region-based policy recommendations. 

Figure 5 illustrates the spatial distribution of significant variables across Sumatra for the 
years 2020, 2021, and 2022. The map provides a visual representation of how the significance of 
each variable varies from year to year. Variables that are significantly correlated with BEI are 
indicated by distinct colors, while non-significant variables are shown in gray. This mapping 
highlights the changes in the significance of variables across the three years, allowing for a deeper 
understanding of regional patterns and trends in the spatial dynamics of the BEI. The shifting 
patterns of significance across different years provide valuable insights into the evolving factors 
influencing BEI in various regions of Sumatra. Figure 5 presents the temporal trends of significant 
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variable coefficients for Medan and Subulussalam, highlighting regions with the highest and 
lowest BEI values. Although no variables were identified as significant, as indicated by the red 
dots, the trends reveal how these variables have influenced the BEI in these regions over the years. 

Figure 6 illustrates the temporal trends of variable coefficients for Medan and 
Subulussalam, representing the regions with the highest and lowest BEI values, respectively. The 
trends highlight how the coefficients of key variables evolved from 2020 to 2022, providing 
insights into the relationship between these variables and the BEI. Administrative factors, such 
as the number of sub-districts and villages, show an increasing influence on BEI, especially in 
Subulussalam, suggesting that administrative factors are becoming more important in shaping 
the region's Blue Economy. In contrast, the gender ratio coefficient sharply decreases, particularly 
in Subulussalam, indicating that gender balance is having less of an impact on the region's Blue 
Economy over time. Similarly, the number of poor people, initially influential, shows a declining 
trend, reflecting socio-economic improvements in Subulussalam. HDI remains positively 
correlated with BEI but fluctuates, revealing the changing role of human development in the Blue 
Economy. The distribution of drinking water sources exhibits more dynamic changes in 
Subulussalam, likely influenced by varying infrastructure development and policy, whereas 
Medan remains more stable in this regard. The analysis of these trends provides valuable insights 
into the evolving factors affecting the Blue Economy across these regions. 

The findings of this study offer valuable insights for local governments to enhance the BEI 
by focusing on sustainable resource management. The research also contributes to the academic 
field, particularly in the area of spatial modeling for maritime economics, offering potential for 
further studies and deeper understanding. Based on the analysis, the following recommendations 
are proposed: 
a. Dominance of the Social Pillar: The social pillar plays a significant role in shaping BEI. 

Given its substantial contribution, policies that emphasize social development can be highly 

effective in boosting BEI. Key actions should include increasing social assistance, improving 

access to education and healthcare, and providing training programs to enhance human 

capital in coastal areas. Strengthening coastal communities and empowering local 

fishermen will not only improve livelihoods but also ensure the sustainability of maritime-

based economies. As highlighted by Okafor-Yarwood et al. (2020), active community 

involvement and social inclusion are key to the success of sustainable blue economy 

initiatives. Their research shows that successful blue economy projects in Africa 

consistently involve local communities in all stages, from planning to implementation, 

creating alignment between economic, social, and environmental goals. Therefore, 

strengthening the social pillar through cross-regional collaboration and more inclusive 

policies is critical to ensuring sustainable and equitable economic development. 

b. Economic Growth in Medan and Subulussalam: Despite Medan and Subulussalam having 

the highest and lowest BEI values respectively, their economic growth is not strongly 

influenced by the variables included in the current model. This suggests the need for a more 

comprehensive approach. To enhance the blue economy, it is recommended that local 

governments focus on investments in maritime infrastructure, strengthen the maritime 

industry, and introduce new indicators such as fisheries sustainability, efficient marine 

resource management, and the impact of blue economy policies. Additionally, boosting the 

industrial sector through technology and improving the competitiveness of coastal 

industries are strategic steps for long-term economic growth. Capacity building for local 

populations, especially fishermen and small-scale entrepreneurs, is vital for fostering a 

resilient and sustainable workforce. As noted by Schutter et al. (2021), the blue economy 

plays a crucial role in driving economic growth from marine resources, and this concept is 
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becoming increasingly dominant in marine governance, emphasizing sustainable economic 

growth that considers social, economic, and environmental aspects. Therefore, deepening 

the blue economy sector through integrated cross-regional collaboration is essential to 

maximize the economic potential of coastal areas. 

 

 
 

Figure 5. Visualization of Significant Variables Across Regions and Years 
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c. Spatio-Temporal Analysis for Targeted Interventions: The spatio-temporal analysis in this 

research identifies regions with low blue economy potential as critical areas for 

intervention. By applying the MGTWR model, which simultaneously accounts for both 

spatial and temporal variations in blue economy dynamics, this study provides a more 

accurate understanding of the challenges faced by different regions in Sumatra. Unlike 

previous research, which often relied on static models or considered only spatial 

dimensions, this study shows how the factors influencing the blue economy evolve over 

time, enabling more targeted and effective interventions. Spatio-temporal analysis allows 

for the identification of more profound patterns and dynamic changes, offering a more 

accurate understanding of the factors influencing the blue economy in both spatial and 

temporal contexts (Christina et al., 2025). This research also emphasizes the importance of 

improving collaboration between neighboring regions to address shared challenges and 

significant factors affecting economic, social, and environmental conditions. This 

interconnected approach introduces a new perspective on blue economy development, 

which has previously been driven mostly by isolated local policies. Through cross-regional 

Figure 6. Temporal Trends of Medan City and Subulussalam City 
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collaboration, synergies can be created to promote broader economic growth, especially in 

coastal and maritime areas where development opportunities are often interlinked. This 

aligns with the findings of Popoola & Olajuyigbe (2023), who emphasize the importance of 

regional cooperation in addressing shared challenges and strengthening inclusive, 

integrated blue economy policies. Comparing this finding with previous research, it is 

evident that the application of MGTWR adds depth and precision to spatial and temporal 

analysis, offering a new perspective on how economic policies can be more effectively 

directed to meet regional needs. 

 

CONCLUSION 

This research examines the BEI across various regions in Sumatra from 2020 to 2022, 
revealing significant regional disparities in the influence of social, economic, and environmental 
factors on BEI. Medan consistently ranked highest due to its advanced infrastructure, resource 
management, and strong maritime industry policies, while Subulussalam faces challenges in 
harnessing its maritime potential. Despite Medan's strong performance, Sumatra as a whole lags 
behind other regions in Indonesia, highlighting the need for policies that focus more on the blue 
economy. This study identifies Group LASSO and Elastic Net as effective methods for selecting 
key variables, such as education and gender ratio, that influence BEI. The MGTWR model with a 
Gaussian kernel was chosen for its ability to meet necessary assumptions, providing reliable 
results despite not having the highest 𝑅2. The findings suggest the need for targeted interventions 
to boost the region’s blue economy through sustainable investment, improved resource 
management, and comprehensive policy frameworks. 

Future studies could explore additional factors such as marine resource sustainability, 
fisheries, and renewable ocean-based energy to further enhance the understanding of the blue 
economy. Expanding the model with multiscale approaches and global perspectives could 
provide a more comprehensive view of how spatial and temporal factors affect BEI. Additionally, 
using alternative variable selection methods could uncover other significant factors, further 
improving the accuracy and robustness of future models. Research focused on strengthening 
maritime infrastructure and aligning blue economy development with national defense and 
environmental sustainability goals would also be valuable for ensuring long-term economic and 
ecological resilience. 
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