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Micro and Small Enterprises (MSE) holds a crucial role in the economy 
because it contributes 55% of the state’s income, but MSE still has a lot 
of deficiencies, so immediate optimization is vital. The purpose of this 
study is to model and map the MSE income at the regency level in 
West Java using Multiscale Geographically Weighted Regression 
(MGWR) with a selection variable process. MGWR is a method that is 
used to capture a spatial heterogeneity process by allowing effects to 
vary over space using “borrowed” nearby data that is controlled by 
various bandwidths for each variable. This research also adds variable 
selection processes such as LASSO and Group LASSO as an 
improvement of MGWR to model group-structured data. The 
response of this study is MSE income in 27 regencies/cities in West 
Java province, Indonesia, with 144 independent variables that will be 
selected using LASSO and Group LASSO to become predictor 
variables in MGWR model. The results of the spatial modelling show 
that the best model is MGWR with Group LASSO using bi-square 
kernel function. Based on this result, it can be seen that a group of 
important variables which significantly affect the MSE income are 
fertility, energy source, natural disaster, industry, and tourism. 
Fertility and energy source significantly affect the MSE income in all 
regencies, but fertility itself has no significant effect in big cities. Then, 
in the industry and tourism, the number of visiting foreign tourists has 
the most significant effect.  
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INTRODUCTION 

The economy is one of the vital aspects in a country and it is also included in Indonesia’s 
development plan also known as RPJPN 2025-2045. To maintain and develop economic growth 
in a country especially Indonesia, Micro and Small Enterprises (MSEs) can be one of the 
promising solutions. It is because MSE contribute 55% of the Gross Domestic Product and 65% 
job opportunities even in the high-incomes economic condition (Anshika et al., 2021). However, 
MSE still has many deficiencies for example a limited financial access and lack of decision-making 
ability (Esubalew & Raghurama, 2020; Rismawati, 2009; Sinambela et al., 2021; Suminah et al., 
2022). The large amount of MSE in Indonesia’s villages has made a huge potential for MSE to 
build and develop a better economic condition in Indonesia.  

Many previous studies have conducted the MSE modelling. For example, the MSE 
modelling using hierarchical multiple regression in Lagos, Nigeria (Olayemi et al., 2022) using a 
questionnaire for gaining the MSEs’ actors’ perception about the ease of carrying out business 
reformation. Then, there is research conducted by (Ayambila, 2023) which uses the Quantile 
regression method for gaining more comprehensive understanding of relations among the 
variables. Next, (E. Colipano, 2022) in his research, he used multinomial logistic regression to 
understand the relations between variables where the dependent variable is categorical.  

The previous research that was stated before has not considered the spatial effect and 
variable selection. In this study, variable selection operators such as Least Absolute Shrinkage 
Selection Operator (LASSO), Group LASSO and Multiscale Geographically Weighted Regression 
(MGWR) with various kernel functions are used for modelling the relation between important 
predictors that have been selected with LASSO or group LASSO and the response with different 
spatial scales for each relation. In this study, 143 predictors with various groups such as 
geography, economy, demography and civilization, education, health, disease, fertility, energy 
source, criminality, disaster, staple food production, vegetables and nuts production, fruit 
production, raw materials and spices, meat production, eggs and milks production, industry and 
tourism, infrastructure and GDRP are used to modelling the MSE’s income in West Java with 27 
observation per variable. The main objective of this study is to identify the important variables 
or group variables that affect the MSE’s income in West Java, and also modelling and mapping 
the significancy of the spatial effect of those important variables from the best-selected model that 
was selected based on the goodness of fit criteria. 

This article consists of four sections. Section 2 explains a brief review of the method that 
used in this study, and each sub-section introduces LASSO, group LASSO and MGWR as well as 
goodness of fit criteria. The results and discussions of this study are explained in Section 3, 
consists of the results of K-fold cross-validation, important variables, outliers, classic assumption 
and optimal bandwidth for each model also the best model determination and the discussion. 
Finally, the conclusions and suggestions derived from the discussion are given in Section 4.  

 

METHOD 

This study uses a lot of data on various aspects. It makes the data have various scales, and 
transformation is a must to prevent the heteroscedasticity in the model residuals. In this study, 
we used the scale() function in R, which is a normal transformation that has a formula such as 

𝑥𝑘𝑛𝑒𝑤 =
𝑥𝑘 − 𝑥𝑘̅̅ ̅

𝜎𝑘
2  (1) 

Where 𝑥𝑘 is the data on the 𝑘-variable, 𝑥𝑘𝑛𝑒𝑤 is the new data after transformation, 𝑥𝑘̅̅ ̅ is the mean 

of the variable, and 𝜎𝑘
2 is the standard deviation of the variable (Kappal, 2019). The following sub-

sections in this section cover approaches such as LASSO regression, group LASSO regression, 
and also Multiscale Geographically Weighted Regression. 
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Least Absolute Shrinkage Selection Operator (LASSO) Regression 

LASSO approaches firstly introduced by (Pillay & Lin, 2023; Tibshirani, 1996) which has 
been preferred by many researchers because this approach can easily define the important 
predictors and exclude the unnecessary variables by reducing the coefficients to zero, even in 
conditions where the number of variables is larger than the number of observations (Schneider 
& Tardivel, 2020). The LASSO regression employs the L1 regularization and has a formula such 
as 

minimize
𝛽∈ℝ𝑘

{
1

2𝑁
∑(𝑦𝑖 −∑𝑥𝑖𝑗𝛽𝑗

𝑘

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆∑|𝛽𝑗|

𝑘

𝑗=1

} (2) 

where the 𝜆 is the control shrinkage parameter for LASSO to reduce the parameter coefficients. 
For a single predictor, we can estimate the 𝛽 for solving the problem in equation (2) by 

𝛽̂ =

{
 
 

 
 
1

𝑁
〈𝒛, 𝒚〉 − 𝜆 𝑖𝑓

1

𝑁
〈𝒛, 𝒚〉 > 𝜆

0 𝑖𝑓
1

𝑁
|〈𝒛, 𝒚〉| ≤ 𝜆

1

𝑁
〈𝒛, 𝒚〉 + 𝜆 𝑖𝑓

1

𝑁
〈𝒛, 𝒚〉 < −𝜆

 (3) 

where 𝛽̃ =
1

𝑁
〈𝒛, 𝒚〉 is the ordinary least square estimator with standardized data. We can rewrite 

the estimator in equation (3) succinctly as 

𝛽̂ = 𝑆𝜆 (
1

𝑁
〈𝒛, 𝒚〉) (4) 

By this logic, the coordinate-wise scheme for solve the full lasso problem for the objective below 
that can be written as 

1

2𝑁
∑(𝑦𝑖 −∑𝑥𝑖𝑙𝛽𝑙 − 𝑥𝑖𝑗𝛽𝑗

𝑙≠𝑗

)

2
𝑁

𝑖=1

+ 𝜆∑|𝛽𝑙|

𝑙≠𝑗

+ 𝜆|𝛽𝑗| (5) 

Based on this problem, we can estimate the parameter by 𝑆𝜆 that can be reconstructed as 

𝛽̂𝑗 = 𝑆𝜆 (
1

𝑁
〈𝒙𝑗, 𝒓

(𝑗)〉) (6) 

𝑟𝑖
(𝑗)
= 𝑦𝑖 −∑𝑥𝑖𝑙𝛽̂𝑙

𝑙≠𝑗

 (7) 

where 𝑟 denotes the partial residual of the model. 

 

Group LASSO 

Regression problems usually involve variables with group structure and substantial 
correlation between variables within the same group. This issue prevents standard LASSO from 
operating efficiently. Group LASSO in (Hastie et al., 2015; Huang et al., 2024), which focuses on 
the variable's group rather than its individual values, can resolve this issue. A group's coefficients 
can all be concurrently reduced to zero (or nonzero) by group LASSO. Take a look at a linear 
regression model with 𝐺 groups of variables. For 𝑔 = 1,… , 𝐺, the covariates in group 𝑔 are 

represented by the vector, 𝑍𝑔 ∈ ℝ
𝑘𝑔. Group LASSO approach can solve a convex problem in 

equation (8) such as 

minimize
(𝜃1,…,𝜃𝐺)

{
1

2
∑(𝒚−∑𝒁𝑗𝜃𝑗

𝐺

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆∑||𝜃𝑗||

𝐺

𝑗=1 2

} (8) 

Since we can center all the variables and the answer in practice, we can ignore the intercept 
𝜃0. The zero subgradient equations for this issue have the following form: 



Rahman et al                             J. Geos. Sci. Anal. 1(3): 185-202 (2025) 
   

188 | JGSA 

−𝒁𝑔
𝑇 (𝒚 −∑𝒁𝑙𝜃𝑙

𝐺

𝑙=1

) + 𝜆𝑠̂𝑔 = 0; 𝑓𝑜𝑟 𝑔 = 1,… , 𝐺, (9) 

when 𝜃𝑔 ≠ 0, then we can necessarily have 𝑠̂𝑔 =
𝜃̂𝑔

||𝜃̂𝑔||
2

, otherwise 𝜃𝑔 = 0, then 𝑠̂𝑔 is any vector with 

||𝑠̂𝑔||
2
≤ 1. A technique to solve the zero sub-gradient equations is to fix all of the block vectors 

{𝜃ℎ, ℎ ≠ 𝑔}, and then solve the 𝜃𝑔. The issue will inevitably converge to an ideal solution because 

it is convex and the penalty is block separable. With all {𝜃ℎ, ℎ ≠ 𝑔} fixed, we write 

−𝒁𝑗
𝑇(𝒓𝑗 − 𝒁𝑗𝜃𝑗) + 𝜆𝑠̂𝑗 = 0 (10) 

where 𝒓𝑔 = 𝒚 −∑ 𝒁ℎ𝜃ℎℎ≠𝑔  is the 𝑔𝑡ℎ partial residual. Considering the conditions that the sub-

gradient 𝑠̂𝑔 satisfies, we must have 𝜃𝑔 = 0  if ||𝒁𝑔
𝑇𝒓𝑔||

2
< 𝜆, and otherwise the minimizer 𝜃𝑔 must 

satisfy 

𝜃𝑗 = (𝒁𝑗
𝑇𝒁𝑗 +

𝜆

||𝜃𝑗||
2

𝑰)

−1

𝒁𝑗
𝑇𝒓𝑗 (11) 

This update is comparable to how a ridge regression problem is solved, with the exception 

that the underlying penalty parameter is dependent on ||𝜃𝑔||
2
. Regretfully, there isn't a closed-

form solution for 𝜃𝑔 in equation (11) unless 𝒁𝑔 is orthonormal. In this particular case, the 

straightforward update is 

𝜃𝑗 = (1+
𝜆

||𝒁𝑗
𝑇𝒓𝑗||

2

𝑰)

+

𝒁𝑗
𝑇𝒓𝑗 (12) 

where (𝑡)+ ∶= max{0, 𝑡} is the positive partial function. 
 

Multiscale Geographically Weighted Regression 

Geographically Weighted Regression (GWR) is an Ordinary Least Square (OLS) that was 
firstly introduced by (Fotheringham et al., 2017, 2023) where the regression process is performed 
spatially uniquely in every location, it is done by calibrating the model separately in every area 
with borrowing data from the nearest location, and weighting the data based on the distance of 
the regression point, so a bigger weight will be given to the closer location. The decrement rate 
of the weight is controlled by a bandwidth that is optimized by GWR calibration.  

The GWR is formulated by 

𝑦𝑖 = 𝛽𝑖0 +∑𝛽𝑖𝑗𝑥𝑖𝑗 + 𝜀𝑖,   𝑖 = 1,… , 𝑛

𝑘

𝑗=1

 (13) 

where 𝑦 is the response, 𝛽𝑖0 is the intercept, 𝑥𝑖𝑘 is the 𝑘-predictor, 𝛽𝑖𝑘 is the 𝑘-local coefficients for 
𝑘-predictor, and 𝜀𝑖 is the residual in 𝑖 location. In the matrix, the GWR estimator for local 
parameter estimation of 𝑖 location is: 

𝛽̂𝑖 = [𝑿
𝑻𝑾𝑖𝑿]

−1𝑿𝑻𝑾𝑖𝒚 (14) 
where 𝑿 is the 𝑛 × 𝑘 predictor matrix, 𝑾𝑖 =  𝑑𝑖𝑎𝑔[𝑤𝑖1, . . . , 𝑤𝑖𝑛] is the 𝑛 × 𝑛 diagonal weight matrix 
which weights each observation based on the distance from 𝑖 location that is measured using the 

kernel function and a certain bandwidth, 𝜷̂ is the 𝑘 × 1 parameter vector, and 𝒚 is the 𝑛 × 1 
response’s observation vector.  

By the definition above, the predicted values of each observation can be formulated by 

𝑦̂𝑖 = 𝑿𝒊[𝑿
𝑻𝑾𝑖𝑿]

−1𝑿𝑻𝑾𝑖𝒚 = 𝑺𝒚 (15) 
𝑺 is the hat matrix, also called the projection matrix, because this matrix can estimate the 𝑦̂ values 
by multiplying them by the 𝒚. Next, we can also calculate the covariance matrix of the estimated 
parameter 𝑽𝑖 that could be constructed in a similar way as 

𝑪𝑖 = [𝑿
𝑻𝑾𝑖𝑿]

−1𝑿𝑻𝑾𝑖 (16) 
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𝑽𝑖 = 𝑪𝑖𝑪𝑖
𝑇𝝈̂2 (17) 

where 𝜎̂2 is the estimated standard deviation of the residual model pattern, which formulated by 

𝝈̂2 =
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑖

𝒎− 𝑡𝑟(𝑺)
 (18) 

with 𝑚 is the number of observations in the sample. Then, we can calculate the standard error of 
the estimated parameter using equation (19) 

𝑠𝑒(𝜷̂𝑖) = √𝑑𝑖𝑎𝑔(𝑽𝑖) (19) 

Then, five different kernel functions that will be used are shown in Table 1 below (Al-
Hasani et al., 2021; De Carvalho et al., 2017; Fan et al., 2018; Nugroho & Slamet, 2018; Zhong et 
al., 2013) 

Table 1. Kernel Function 

Function Specification  

Bi-square 𝑤𝑖 = {
(1 − (

|𝑑𝑖|

𝑏
)

2

)

2

,   if |𝑑𝑖| < 𝑏

0,   others

 (20) 

Gaussian 𝑤𝑖 = exp (−
1

2
(
|𝑑𝑖|

𝑏
)

2

) (21) 

Exponential 𝑤𝑖 = exp (−(
|𝑑𝑖|

𝑏
)) (22) 

Tricube 𝑤𝑖 = {
(1 − (

|𝑑𝑖|

𝑏
)

3

)

3

,   if |𝑑𝑖| < 𝑏

0,   others

 (23) 

Boxcar 𝑤𝑖 = {
1,   if 𝑑𝑖 < 𝑏
0,   others

 (24) 

which bandwidth 𝑏 is a determined parameter from cross-validation (CV) process that shows the 
neighbourhood of each location (Fotheringham et al., 2022). For simplicity, we can write the GWR 
algorithm as: 
 
Algorithm 1 
Geographically Weighted Regression Estimation Process 

1. Initialize empty 𝜷̂(𝑚 × 𝑘), 𝒚̂(𝑚 × 1), 𝑺(𝑚 ×𝑚), 𝑪𝑪𝑻(𝑚 × 𝑘), 𝑺𝑬(𝑚 × 𝑘) 
2. Given a data-borrowing scheme, compute 𝑾 
3. For location 1…𝑚, at each location 𝑖, calculate: 
4. The diagonal matrix 𝑾𝑖 based on a row of the spatial weight matrix 𝑾 
5. Parameter estimates 𝜷̂𝑖 from equation (14); store in 𝜷̂ 
6. Predictive value 𝑦̂𝑖 from equation (15); store in 𝒚̂ 
7. Row of hat matrix 𝑺𝑖 from equation (15); store in 𝑺 
8. Diagonal of intermediate values 𝑪𝑖𝑪𝑖

𝑇 from equation (16); store in 𝑪𝑪𝑻 
9. End for 
10 Calculate 𝜎̂2 from equation (18) 
11. Calculate standard errors 𝑠𝑒(𝜷̂𝑖) in equation (19); store 𝑺𝑬 
12. End for 
13. End 

The conventional GWR limitation is an assumption that every variable relation in the 
model has the exact same bandwidth of weights in the same spatial scale. MGWR covered this 
limitation, by using different bandwidths for each variable relation in the model. MGWR 
advantages are that it could explain spatial heterogeneity more accurately and reduce the bias of 
parameter estimation (Fotheringham et al., 2017). The definition of MGWR model is 

𝑦𝑖 = 𝑏𝑤0(𝛽0𝑖) +∑𝑏𝑤𝑗(𝛽𝑖𝑗𝑥𝑖𝑗)

𝑘

𝑗=1

+ 𝜀𝑖 (25) 
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where 𝑏𝑤 is every bandwidth that used for each model component. MGWR model could be 
calibrated by rearranging the formula as Generalized Additive Model (GAM) (Comber et al., 
2024). The GAM model of MGWR has a formula that can be written as 

𝒚 = 𝒇𝒃𝒘𝟎 +∑𝒇𝒃𝒘𝒋𝑿𝒋

𝒌

𝒋=𝟏

+ 𝜺 (26) 

where 𝒇𝒃𝒘𝒌(𝑿𝒌) = 𝑏𝑤𝑘(𝛽𝑘)𝑿𝒌 is a smoothing function or data-borrowing scheme that includes 

kernel function selection, weight and bandwidth calculation. To estimate every 𝒇𝒃𝒘𝒌 and calculate 

the 𝛽𝑘, equation (26) could be reconstructed and gives component condition expectation as 
follows 

𝒇𝒃𝒘𝒌 = 𝐸 (𝒚 − ∑ 𝒇𝒃𝒘𝒑𝒑≠𝒌 − 𝜺|𝑿𝒌) = 𝑨𝒌(𝒚 −∑𝒇𝒃𝒘𝒑
𝒑≠𝒌

) 

 

(27) 

where 𝑨𝒌 is 𝑬(. |𝑿𝒌) which is a hat matrix of univariate GWR model of 𝑿𝒌 which mapping 𝒚 −

∑ 𝒇𝒃𝒘𝒑𝒑≠𝒌  to 𝒇̂𝒃𝒘𝒌. GWR hat matrix 𝑨𝒌 defined as 

𝑨𝒌 = (
𝑥1𝑘(𝑿𝒌

𝑻𝑾1𝑿𝒌)
−1
𝑿𝒌
𝑻𝑾1

…

𝑥𝑛𝑘(𝑿𝒌
𝑻𝑾𝒏𝑿𝒌)

−1
𝑿𝒌
𝑻𝑾𝒏

)

𝑛×𝑛

 (28) 

where 𝑾𝒊 is a diagonal spatial weight matrix which calculated based on a basis of a bandwidth 
with specific covariate and a kernel function. 

After initialize the initial 𝛽 for each predictor, we define a residual of GAM model of 
MGWR for the back-fitting algorithm as follows 

𝜺̂ = 𝒚 −∑𝒇̂𝒋

𝒌

𝒋=𝟏

 (29) 

Consider 𝑨𝒌 is a hat matrix of the partial optimal model before, so 

𝒇̂𝒌
∗ = 𝑨𝒌(𝒇̂𝒌 + 𝜺̂) (30) 

where 𝒇̂𝒌
∗  is the updated 𝒇̂𝒌 which is an additive term of the prediction result of the previous 

iteration. 
At the final iteration, 𝑦̂ predicted value and 𝜀̂ residual will be used to see the difference 

between the current and the previous values to guarantee that the back-fitting algorithm reaches 
convergence. We can use the Score of Change (SOC) value to check the convergence based on the 
Residual Sum of Square (RSS) of the MGWR model.  

𝑆𝑂𝐶𝑅𝑆𝑆 =
𝑅𝑆𝑆𝑛𝑒𝑤 − 𝑅𝑆𝑆𝑜𝑙𝑑

𝑅𝑆𝑆𝑛𝑒𝑤
 (31) 

The convergence is reached when SOC has a smaller value than an 𝜂 limitation which is 
commonly set as 10−5. It is possible to compute a covariate-specific hat matrix 𝑹𝑘 that maps the 

response 𝒚 to each of the estimated model components 𝒇̂𝑘 in the back-fitting algorithm such that  

𝒇̂𝑘 = 𝑹𝑘𝒚 (32) 
where 𝑹𝑘 is calculated as 

𝑹 = [

𝑰 𝑨1 … 𝑨1
𝑨2 𝑰 … 𝑨2
… … … …
𝑨𝑘 𝑨𝑘 … 𝑰

]

−1

[

𝑨1
𝑨2
…
𝑨𝑘

] (33) 

After convergence is reached, the final values of 𝑹𝑘 can be summed to obtain the overall hat 
matrix 𝑺 for the model as follows 

𝑺 =∑𝑹𝑘
𝑘

 (34) 

In addition, we can use the 𝑹𝑘 to compute the covariance-specific effective number of parameters 
(ENP) as follows  
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𝐸𝑁𝑃𝑘 = 𝑡𝑟(𝑹𝑘) (35) 
and ENP of the model can be calculated by 

𝐸𝑁𝑃𝑚𝑜𝑑𝑒𝑙 =∑𝐸𝑁𝑃𝑘
𝑘

 (36) 

For simplicity, we can write the MGWR algorithm as can be seen in Algorithm 2. 
 
Algorithm 2 
Multiscale Geographically Weighted Regression Estimation Process 

1. GWR model calibration to obtain the initial values for each 𝒇̂𝑘 , 𝜺̂ and 𝑹𝑘 
2. Initialize 𝑆𝑂𝐶 ≫ 𝜂 
3. Do until 𝑆𝑂𝐶 < 𝜂: 
4. For each term 𝑘: 
5. Calibrate univariate GWR model (𝒇̂𝒌 + 𝜺̂)~𝑿𝒌 to obtain new 𝒇̂𝒌

∗  and 𝜺̂∗ 

6. Update 𝒇̂𝑘 ← 𝒇̂𝑘
∗  and 𝜺̂ ← 𝜺̂∗ 

7. Calculate the 𝑹𝑘 
8. End for 
9. Calculate new 𝑆𝑂𝐶∗ and update 𝑆𝑂𝐶 ← 𝑆𝑂𝐶∗ 
10 End do 
11. For each term 𝑘: 
12. Calculate 𝐸𝑁𝑃𝑘 
13. End for 
14. Calculate 𝑺 

 

Moran’s Index 

In spatial modelling, Moran’s I index is an important aspect that has to be concerned. 
Moran’s I index was developed by Patrick Alfred Pierce Moran that used to compute the spatial 
dependency between observation and location. It has a value range between -1 to 1 that shown 
the spatial term characteristic such as clustered, random, or dispersed  (Higazi et al., 2013). The 
formula for calculate the Moran’s I index is written as follows  

𝐼 =  (
𝑁

𝑊
) ∗

𝛴𝑖=1
𝑁 𝛴𝑗=1

𝑁 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥̅)

𝛴(𝑥𝑖 − 𝑥̅)
2

 (37) 

 

Goodness of Fit 

The goodness of fit for each model can be seen from how well the model explains the data. 
In this study, we use 𝑅2 and AIC value to determine the best model. The 𝑅2 value has a formula 
for computing as follows (Sharif & Kamal, 2018) 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑(𝑦𝑖 − 𝑦̂𝑖)
2

∑(𝑦𝑖 − 𝑦̅)
2

 (38) 

Then, the AIC value was introduced by Hirotugu Akaike on 1973 as an extension of Maximum 
Likelihood (Cavanaugh & Neath, 2019; El-Habil, 2012). The formula of Maximum Likelihood is 
written as follows 

ℒ(𝜇, 𝜎|𝑦1, … , 𝑦𝑛) = 𝑓(𝑦1, … , 𝑦𝑛|𝜇, 𝜎) = (
1

√2𝜋𝜎
)
𝑛

𝑒
−∑

(𝑦𝑖−𝜇)
2

2𝜎2
𝑛
𝑖=1  (39) 

The important idea of AIC is to combine the estimation process with structural and dimension 
determination. The AIC formula is written as follows 

𝐴𝐼𝐶 = −2 ln (ℒ(𝜃𝑀𝐿𝐸|𝑦)) + 2𝑘 (40) 
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RESULTS AND DISCUSSIONS 

In this section, we present the results of the modelling and analysis process of MGWR 
model. We used data with various aspects including Geography, Economy, Demography, 
Education, Health, Disease, Fertility, Energy, Criminality, Disaster, Regional production, 
Infrastructure, GDRP, Industry and Tourism. The dataset has a total of 144 variables with MSE 
income as the response that has measures in 27 regencies in West Java province. In the following 
sections, we estimate the optimal selection parameter 𝜆, predict the important variables and 
group variables, check the outliers and classic assumptions, determine the best model and mapp 
the significance of each important variable or group variable. The models that will be used are 
MGWR with LASSO and MGWR with Group LASSO. In the modelling section, we also use five 
different kernels for each model to obtain the best model of MSE income in West Java. 

 

Important Variable Selection 

The Mean-Squared Error (MSE) of LASSO and Group LASSO cross-validation process is 
shown in Figure 1. In LASSO CV process, 5 or 10 folds are commonly used in the process 
(Oyedele, 2023). In this study, we use 5 folds in the CV process. The results of the CV process can 
be seen in Figure 1 below. The minimum values of log lambda of LASSO and Group LASSO CV 
process, which have the smallest MSE values (Takano & Miyashiro, 2020) successively are 0,1147 
and 0,0623.  

 

 
 

 
(a) (b) 

Figure 1. MSE plot of CV LASSO (a) and CV Group LASSO (b) 

 
As displayed in Table 2 and 3, the optimal LASSO and Group LASSO model with 

important variables are obtained after employing the best lambda that has the smallest MSE in 
the CV process. The important variables in LASSO model are Pulmonary tuberculosis cases (𝑋62), 
Flood cases (𝑋103), Beef production (𝑋151), Number of MSE’s workers (𝑋172) and the Number of 
MSEs’ expenditure (𝑋173) where only these variables that significantly affect the MSE’s income. 
Meanwhile in Group LASSO, the important group of variables that were selected in the model 
are Fertility (𝐺7), Energy source (𝐺8), Disaster (𝐺10) also Industry and Tourism (𝐺17). 

 
Table 2. Significant coefficient variables for LASSO 

Variables  Coefficient 

𝑿𝟔𝟐: Pulmonary tuberculosis cases 0,0721 
𝑿𝟏𝟎𝟑: Flood cases 0,1030 
𝑿𝟏𝟓𝟏: Beef production (kg) 0,0371 
𝑿𝟏𝟕𝟐: Number of MSE’s workers 0,1238 
𝑿𝟏𝟕𝟑: Number of MSE’s expenditure (thousand rupiah) 0,6442 
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Table 3. Significant coefficient variables for Group LASSO 

Variables Coefficient Variables Coefficient 

𝑿𝟕𝟏: Number of childbearing age 
couples 

0,0797 𝑋104: Forest fires cases 0,0059 

𝑿𝟕𝟐: Number of family planning 
participants 

0,0854 𝑋105: Tornado cases 0,0130 

𝑿𝟖𝟏: Percentage of PLN electricity 
users 

0,0119 𝑋171: Number of MSE 0,0904 

𝑿𝟖𝟐: Percentage of gas users 0,0171 𝑋172: Number of MSE’s workers 0,1787 

𝑿𝟖𝟑: Percentage of wood users -0,0155 𝑋173: Number of MSE’s 
expenditure (thousand rupiah) 

0,2280 

𝑿𝟖𝟒: Percentage of access to 
adequate drinking water 

0,0076 𝑋174: Number of Restaurants 0,0577 

𝑿𝟏𝟎𝟏: Earthquake cases -0,0022 𝑋175: Number of staying local 
tourists 

0,0384 

𝑿𝟏𝟎𝟐: Landslide cases 0,0126 𝑋176: Number of staying foreign 
tourists 

0,0386 

𝑿𝟏𝟎𝟑: Flood cases 0,0144 𝑋177: Number of visiting local 
tourists 

-0,0106 

  𝑋178: Number of visiting foreign 
tourists 

-0,0150 

 

Classic Assumption 

Before employed to the spatial modelling, the selection variable process results have to be 
checked on the classic assumption. The classic assumption test has a crucial role in statistical 
modelling to guarantee the result statistical validation (Ainiyah et al., 2016). It involves a 
normality test e.g. Kolmogorov-Smirnov normality test (Jurečková & Picek, 2007) and 
heterogeneity test e.g. Breusch-Pagan test (Halunga et al., 2017). This assumption can reduce the 
bias of the model and validate the results. As displayed in Table 4, model LASSO and Group 
LASSO have a normal distribution because they both have 𝑝-value > 0,05, so the H0 that said the 
model has a normal-like distribution can be accepted. Then, we can also see that the LASSO 
model has no constant error because the model has 𝑝-value < 0,05, which means a 
heteroscedasticity problem occurs in the model, meanwhile the Group LASSO model has 
constant error because it has 𝑝-value > 0,05. In addition, we can see that LASSO model has 
Moran’s I index of 0,0148, which means the data characteristics on each location are clustered. 
Meanwhile, in Group LASSO model has a Moran’s I index of -0,0846 which means the data 
characteristics on each location are dispersed.  

Table 4. Classic assumption and Moran I test for LASSO and Group LASSO model 

Tests 𝒑-value 

LASSO Group LASSO 

Kolmogorov-Smirnov normality test 0,4623 0,1154 
Breusch-Pagan Heteroscedasticity test 0,0483 0,8425 

 Moran’s I index 
Moran’s I test 0,0148 -0,0846 

 
Another part of the classic assumption is the multicollinearity test, which explains about the 

collinearity level among the variables. The collinearity level on the multicollinearity test is measured by 
the Variance Inflation Factor (VIF), where variables that have more than 10 of VIF means those variables 
have a multicollinearity problem (Daoud, 2017). Table 5 and Table 6 are show the VIF of each important 
variables in LASSO and Group LASSO model which we can see all the variables in LASSO model has less 
than 10 VIF values, meanwhile in Group LASSO, still there are variables that has more than 10 VIF values 
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because the Group LASSO approach reduce the residual sum of square error among the groups which 
makes it possible still there is high correlation between variables in the same group (Yunus et al., 2020). 

 
Table 5. Multicollinearity test for LASSO model 

Variables VIF 
𝑿𝟔𝟐: Pulmonary tuberculosis cases 3,1623 

𝑿𝟏𝟎𝟑: Flood cases 2,3523 

𝑿𝟏𝟓𝟏: Beef production (kg) 2,4656 

𝑿𝟏𝟕𝟐: Number of MSE’s workers 2,9514 

𝑿𝟏𝟕𝟑: Number of MSE’s expenditure (thousand rupiah) 2,5907 

 
Table 6. Multicollinearity test for Group LASSO model 

Variables VIF Variables VIF 

𝑿𝟕𝟏: Number of childbearing age 
couples 

342,6608 𝑋104: Forest fires cases 3,7647 

𝑿𝟕𝟐: Number of family planning 
participants 

411,0664 𝑋105: Tornado cases 19,1444 

𝑿𝟖𝟏: Percentage of PLN electricity 
users 

6,3489 𝑋171: Number of MSE 46,6817 

𝑿𝟖𝟐: Percentage of gas users 11,4102 𝑋172: Number of MSE’s workers 53,4117 

𝑿𝟖𝟑: Percentage of wood users 36,4436 𝑋173: Number of MSE’s 
expenditure (thousand rupiah) 

12,2694 

𝑿𝟖𝟒: Percentage of access to 
adequate drinking water 

8,6875 𝑋174: Number of Restaurants 1,7907 

𝑿𝟏𝟎𝟏: Earthquake cases 9,0078 𝑋175: Number of staying local 
tourists 

34,6214 

𝑿𝟏𝟎𝟐: Landslide cases 12,1726 𝑋176: Number of staying foreign 
tourists 

30,8445 

𝑿𝟏𝟎𝟑: Flood cases 28,1466 𝑋177: Number of visiting local 
tourists 

7,2476 

  𝑋178: Number of visiting foreign 
tourists 

3,0420 

 

Model Comparison 

The accuracy parameters of each model are shown in Table 7. We can see that the best 
model is based on the model with the highest 𝑅2 and the smallest AIC value is MGWR with 
Group LASSO in Bi-square kernel function. MGWR model has the highest 𝑅2 value of 0,9999 or 
99,99% which means only 0,01% of error that exists in the model. This model also has AIC value 
of 252,4375, which is the smallest AIC value among the other models, and the smaller AIC value 
of the model, the more accurate the model will be (Cavanaugh & Neath, 2019).  

 Table 7. Model Comparison 

 

 

Model MGWR LASSO MGWR Group LASSO 

R Squared AIC R Squared AIC 

Bi-square 0,9935 376,0386 0,9999 252,4375 

Gaussian 0,9875 387,9883 0,9979 351,4153 

Exponential 0,9899 384,4700 0,9985 343,6644 

Tricube 0,9931 377,9702 0,9999 263,0751 

Boxcar 0,9901 383,4834 0,9975 320,4471 
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Best Model Mapping Result 

The result of spatial modelling using MGWR with Group LASSO in Bi-square model can 
be seen in Table B.4. The table shows that few variables have positive effect on MSE for example, 
the Number of childbearing age couples (𝑋71) which means these variables can increase the MSE 
income in West Java. Meanwhile, there are also few variables which have negative effect on MSE 
income for example Flood cases (𝑋103) which means these variables can reduce MSE income in 
West Java. From Figure 2 to Figure 5, we can see that on average, only the Number of childbearing 
age couples (𝑋71), Number of family planning participants (𝑋72), Percentage of PLN electricity 
users (𝑋81), Percentage of gas users (𝑋82), Percentage of access to adequate drinking water (𝑋84), 
Number of MSE (𝑋171), Number of MSE workers (𝑋172) and Number of MSE’s expenditure (𝑋173) 
which significantly affect the MSE income. 

 

 
Figures 2. Fertility group variables significancy 
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Figures 3. Disaster group variables significancy 

 

 

 
Figures 4. Energy Source group variables significancy 
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Figures 5. Industry and Tourism group variables significancy 

 



Rahman et al                             J. Geos. Sci. Anal. 1(3): 185-202 (2025) 
   

198 | JGSA 

The spatial modelling result using MGWR with Group LASSO in Bi-square model as the 
best model has regression equation on the mean level as follows: 

𝑦𝑖 = 122608,8334 + 8,5672𝑋71 − 10,2736𝑋72 − 1261,2520𝑋81 − 28,7324𝑋82 − 68,7266𝑋83
+ 53,7008𝑋84 + 523,9789𝑋101 + 6,7084𝑋102 − 18,7635𝑋103 + 234,3642𝑋104
+ 18,9748𝑋105 − 0,4302𝑋171 + 4,2617𝑋172 + 1,2506𝑋173 + 0,1228𝑋174
+ 0,0002𝑋175 − 0,0027𝑋176 − 0,0216𝑋177 + 0,0107𝑋178 

For example, the Number of childbearing age couples (𝑋71) has a mean value of 8,5672, it can be 
interpreted that this variable increases the MSE income by 8,5672 for every 1 increment. On the 
other hand, the Number of family planning participants (𝑋72) has a mean value of -10,2736, it can 
be interpreted that this variable decreases the MSE income by -10,2736 for every 1 increment 
(Maulida, 2013; Rahmawati et al., 2020; Basbay et al., 2016; Brundage et al., 2014; Alemayehu et 
al., 2023; Rianty & Rahayu, 2021; Jalaliah et al., 2022). We can also map the significantly affecting 
group variables as shown in Figure 6. 
 

 
 

Figure 6. Group of Variables Significance 
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