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because it contributes 55% of the state’s income, but MSE still has a lot
of deficiencies, so immediate optimization is vital. The purpose of this
study is to model and map the MSE income at the regency level in
West Java using Multiscale Geographically Weighted Regression
(MGWR) with a selection variable process. MGWR is a method that is
used to capture a spatial heterogeneity process by allowing effects to
vary over space using “borrowed” nearby data that is controlled by
various bandwidths for each variable. This research also adds variable
selection processes such as LASSO and Group LASSO as an
improvement of MGWR to model group-structured data. The
response of this study is MSE income in 27 regencies/ cities in West
Java province, Indonesia, with 144 independent variables that will be
selected using LASSO and Group LASSO to become predictor
variables in MGWR model. The results of the spatial modelling show
that the best model is MGWR with Group LASSO using bi-square
kernel function. Based on this result, it can be seen that a group of
important variables which significantly affect the MSE income are
fertility, energy source, natural disaster, industry, and tourism.
Fertility and energy source significantly affect the MSE income in all
regencies, but fertility itself has no significant effect in big cities. Then,
in the industry and tourism, the number of visiting foreign tourists has
the most significant effect.
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INTRODUCTION

The economy is one of the vital aspects in a country and it is also included in Indonesia’s
development plan also known as RPJPN 2025-2045. To maintain and develop economic growth
in a country especially Indonesia, Micro and Small Enterprises (MSEs) can be one of the
promising solutions. It is because MSE contribute 55% of the Gross Domestic Product and 65%
job opportunities even in the high-incomes economic condition (Anshika et al., 2021). However,
MSE still has many deficiencies for example a limited financial access and lack of decision-making
ability (Esubalew & Raghurama, 2020; Rismawati, 2009; Sinambela et al., 2021; Suminah et al.,
2022). The large amount of MSE in Indonesia’s villages has made a huge potential for MSE to
build and develop a better economic condition in Indonesia.

Many previous studies have conducted the MSE modelling. For example, the MSE
modelling using hierarchical multiple regression in Lagos, Nigeria (Olayemi et al., 2022) using a
questionnaire for gaining the MSEs’ actors’ perception about the ease of carrying out business
reformation. Then, there is research conducted by (Ayambila, 2023) which uses the Quantile
regression method for gaining more comprehensive understanding of relations among the
variables. Next, (E. Colipano, 2022) in his research, he used multinomial logistic regression to
understand the relations between variables where the dependent variable is categorical.

The previous research that was stated before has not considered the spatial effect and
variable selection. In this study, variable selection operators such as Least Absolute Shrinkage
Selection Operator (LASSO), Group LASSO and Multiscale Geographically Weighted Regression
(MGWR) with various kernel functions are used for modelling the relation between important
predictors that have been selected with LASSO or group LASSO and the response with different
spatial scales for each relation. In this study, 143 predictors with various groups such as
geography, economy, demography and civilization, education, health, disease, fertility, energy
source, criminality, disaster, staple food production, vegetables and nuts production, fruit
production, raw materials and spices, meat production, eggs and milks production, industry and
tourism, infrastructure and GDRP are used to modelling the MSE’s income in West Java with 27
observation per variable. The main objective of this study is to identify the important variables
or group variables that affect the MSE’s income in West Java, and also modelling and mapping
the significancy of the spatial effect of those important variables from the best-selected model that
was selected based on the goodness of fit criteria.

This article consists of four sections. Section 2 explains a brief review of the method that
used in this study, and each sub-section introduces LASSO, group LASSO and MGWR as well as
goodness of fit criteria. The results and discussions of this study are explained in Section 3,
consists of the results of K-fold cross-validation, important variables, outliers, classic assumption
and optimal bandwidth for each model also the best model determination and the discussion.
Finally, the conclusions and suggestions derived from the discussion are given in Section 4.

METHOD

This study uses a lot of data on various aspects. It makes the data have various scales, and
transformation is a must to prevent the heteroscedasticity in the model residuals. In this study,

we used the scale() function in R, which is a normal transformation that has a formula such as
Xy — X
Xknew = % (1)
k
Where x; is the data on the k-variable, x;, _ is the new data after transformation, X; is the mean
of the variable, and o7 is the standard deviation of the variable (Kappal, 2019). The following sub-
sections in this section cover approaches such as LASSO regression, group LASSO regression,

and also Multiscale Geographically Weighted Regression.

186 | JGSA



Rahman et al. J. Geos. Sci. Anal. 1(3): 185-202 (2025)

Least Absolute Shrinkage Selection Operator (LASSO) Regression

LASSO approaches firstly introduced by (Pillay & Lin, 2023; Tibshirani, 1996) which has
been preferred by many researchers because this approach can easily define the important
predictors and exclude the unnecessary variables by reducing the coefficients to zero, even in
conditions where the number of variables is larger than the number of observations (Schneider
& Tardivel, 2020). The LASSO regression employs the L1 regularization and has a formula such
as

k 2

N k
- . - 1
minimze o ) v = D by | +40, 185 “
i= J=

j=1
where the 4 is the control shrinkage parameter for LASSO to reduce the parameter coefficients.
For a single predictor, we can estimate the 8 for solving the problem in equation (2) by
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where f = —(z,y) is the ordinary least square estimator with standardized data. We can rewrite

the estimator in equation (3) succinctly as

A 1
B =35 (N (Z'Y>) (4)
By this logic, the coordinate-wise scheme for solve the full lasso problem for the objective below

that can be written as
2
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Based on this problem, we can estimate the parameter by S, that can be reconstructed as
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where r denotes the partial residual of the model.

Group LASSO

Regression problems usually involve variables with group structure and substantial
correlation between variables within the same group. This issue prevents standard LASSO from
operating efficiently. Group LASSO in (Hastie et al., 2015; Huang et al., 2024), which focuses on
the variable's group rather than its individual values, can resolve this issue. A group's coefficients
can all be concurrently reduced to zero (or nonzero) by group LASSO. Take a look at a linear
regression model with G groups of variables. For g = 1, ..., G, the covariates in group g are
represented by the vector, Z; € R¥s. Group LASSO approach can solve a convex problem in
equation (8) such as

N

1 G 2 G
miningze i3 | y= 2,216 | +22 [l ®
Jj=1 Jj=1 2

=1

Since we can center all the variables and the answer in practice, we can ignore the intercept
0y. The zero subgradient equations for this issue have the following form:
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G
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19l],

||§g || < 1. A technique to solve the zero sub-gradient equations is to fix all of the block vectors
2

when 99 # 0, then we can necessarily have §; = otherwise ég = 0, then §; is any vector with

{6, h # g}, and then solve the ég. The issue will inevitably converge to an ideal solution because
it is convex and the penalty is block separable. With all {6, h # g} fixed, we write
—Z[(rj—Z;6,)+ 23 =0 (10)
where ry =y —¥p.4,Z 10y is the gt partial residual. Considering the conditions that the sub-
gradient $, satisfies, we must have §; = 0 if ||Z§rg | |2 < 2, and otherwise the minimizer 8, must

satisfy
-1

~ A
6=\2/z;+——1)| Zr; (11)
| 6] |2
This update is comparable to how a ridge regression problem is solved, with the exception

that the underlying penalty parameter is dependent on ||§g | |2. Regretfully, there isn't a closed-

form solution for 8, in equation (11) unless Z, is orthonormal. In this particular case, the
straightforward update is

~ A
=|1+—F1I| ZIr; 12
J || Z]-Trj|| jti (12)
2 /4
where (t), := max{0, t} is the positive partial function.

Multiscale Geographically Weighted Regression

Geographically Weighted Regression (GWR) is an Ordinary Least Square (OLS) that was
firstly introduced by (Fotheringham et al., 2017, 2023) where the regression process is performed
spatially uniquely in every location, it is done by calibrating the model separately in every area
with borrowing data from the nearest location, and weighting the data based on the distance of
the regression point, so a bigger weight will be given to the closer location. The decrement rate
of the weight is controlled by a bandwidth that is optimized by GWR calibration.

The GWR is formulated by

k

Vi =,8i0+z,8ijxij+si, i = 1, e, n (13)
j=1

where y is the response, f5; is the intercept, x;;, is the k-predictor, S is the k-local coefficients for
k-predictor, and ¢; is the residual in i location. In the matrix, the GWR estimator for local
parameter estimation of i location is:

pi= XTWX]XTWyy (14)
where X is the n X k predictor matrix, W; = diag[w;y,..., Wi, ] is the n X n diagonal weight matrix
which weights each observation based on the distance from i location that is measured using the
kernel function and a certain bandwidth, B is the k x 1 parameter vector, and y is the n X 1
response’s observation vector.

By the definition above, the predicted values of each observation can be formulated by
9 = X X"W X]"'X"Wy = Sy (15)

§ is the hat matrix, also called the projection matrix, because this matrix can estimate the y values
by multiplying-them by the y. Next, we can also calculate the covariance matrix of the estimated
parameter V; that could be constructed in a similar way as

C; = [X"W X171 XTw; (16)
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V; = C;,CTg? (17)
where 62 is the estimated standard deviation of the residual model pattern, which formulated by
. . — A. 2
62 — Zl(yl yl) (18)
m — tr(S)
with m is the number of observations in the sample. Then, we can calculate the standard error of
the estimated parameter using equation (19)
se(B;) = \diag(Vy) (19)
Then, five different kernel functions that will be used are shown in Table 1 below (Al-
Hasani et al., 2021; De Carvalho et al., 2017; Fan et al., 2018; Nugroho & Slamet, 2018; Zhong et
al., 2013)

Table 1. Kernel Function

Function Specification
2
G\ R
Bi-square w; = “\p » 1fdi] < (20)
0, others
. 1(1dil\*
Gaussian w;=exp|—=|(— (21)
2\ b
. |d; |
Exponential wp =exp| —(=~ (22)
3
AN <
Tricube w; = “\'p » ifdi] < (23)
0, others
(1, ifd; <b
Boxcar Wi { 0, others 4)

which bandwidth b is a determined parameter from cross-validation (CV) process that shows the
neighbourhood of each location (Fotheringham et al., 2022). For simplicity, we can write the GWR
algorithm as:

Algorithm 1
Geographically Weighted Regression Estimation Process
1. Initialize empty B(m x k),y(m x 1),S(m x m), CCT(m X k),SE(m X k)
Given a data-borrowing scheme, compute W
For location 1 ...m, at each location i, calculate:
The diagonal matrix W; based on a row of the spatial weight matrix W

Parameter estimates f8; from equation (14); store in B
Predictive value ¥; from equation (15); store in y
Row of hat matrix §; from equation (15); store in §
Diagonal of intermediate values C;C? from equation (16); store in CCT

9. End for

10 Calculate 62 from equation (18)

11. Calculate standard errors se(B;) in equation (19); store SE

12. End for

13. End

The conventional GWR limitation is an assumption that every variable relation in the

model has the exact same bandwidth of weights in the same spatial scale. MGWR covered this
limitation, by using different bandwidths for each variable relation in the model. MGWR
advantages are that it could explain spatial heterogeneity more accurately and reduce the bias of
parameter estimation (Fotheringham et al., 2017). The definition of MGWR model is

PN PN

K
yi = bwo(Boi) + Z bw;(Bijxij) + & (25)
=1

J
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where bw is every bandwidth that used for each model component. MGWR model could be
calibrated by rearranging the formula as Generalized Additive Model (GAM) (Comber et al.,
2024). The GAM model of MGWR has a formula that can be written as

k
j=1

where fp,, (Xi) = bwi (Bix)X) is a smoothing function or data-borrowing scheme that includes
kernel function selection, weight and bandwidth calculation. To estimate every f,,, and calculate
the By, equation (26) could be reconstructed and gives component condition expectation as
follows

fow, =E (}’ — Yp=k fow, — €|Xk) =AYy - Z fow, (27)

p*k

where Ay, is E(.|X}) which is a hat matrix of univariate GWR model of X} which mapping y —
Ypzkf bw,, tO fbwk. GWR hat matrix A, defined as

xlk(xiwlxk)_lxiwl
A = (28)
xnk(XiwnXk) lxiwn nxn
where W; is a diagonal spatial weight matrix which calculated based on a basis of a bandwidth
with specific covariate and a kernel function.
After initialize the initial f for each predictor, we define a residual of GAM model of
MGWR for the back-fitting algorithm as follows

k
e=y-> 29)
j=1
Consider Ay, is a hat matrix of the partial optimal model before, so
fi=Ac(fr +8) (30)

where f}, is the updated f), which is an additive term of the prediction result of the previous
iteration.

At the final iteration, y predicted value and £ residual will be used to see the difference
between the current and the previous values to guarantee that the back-fitting algorithm reaches
convergence. We can use the Score of Change (SOC) value to check the convergence based on the
Residual Sum of Square (RSS) of the MGWR model.
RSSpew — RSSo14

RSSnew
The convergence is reached when SOC has a smaller value than an 7 limitation which is
commonly set as 107°. It is possible to compute a covariate-specific hat matrix R, that maps the
response y to each of the estimated model components f; in the back-fitting algorithm such that

SOCrss = (31)

fr=Ryy (32)
where Ry, is calculated as
I A, .. A4,
|4 T - Az‘ [AZ )
4, A, 1| 14,

After convergence is reached, the final values of Ry can be summed to obtain the overall hat
matrix S for the model as follows

S = z Ry, (34)
K

In addition, we can use the Rj to compute the covariance-specific effective number of parameters
(ENP) as follows
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and ENP of the model can be calculated by
ENPmodel = ZENPk (36)

3
For simplicity, we can write the MGWR algorithm as can be seen in Algorithm 2.

Algorithm 2
Multiscale Geographically Weighted Regression Estimation Process

1.  GWR model calibration to obtain the initial values for each f, & and R}
2. Initialize SOC » n

3. Do until SOC < n:

4.  For each term k:

5. Calibrate univariate GWR model (fk + &)~X, to obtain new frand &
6. Update fi, « f and & « &

7.  Calculate the R,

8.  End for

9. Calculate new SOC* and update SOC < SOC*

10 End do

11. For each term k:

12. Calculate ENP,

13. End for

14. Calculate §

Moran’s Index
In spatial modelling, Moran’s I index is an important aspect that has to be concerned.
Moran’s I index was developed by Patrick Alfred Pierce Moran that used to compute the spatial
dependency between observation and location. It has a value range between -1 to 1 that shown
the spatial term characteristic such as clustered, random, or dispersed (Higazi et al., 2013). The
formula for calculate the Moran’s I index is written as follows
[ = (ﬁ) . Z{illfilwij(xi - J?)(x] - f)
W Z(xl- - ?Z)Z

(37)

Goodness of Fit
The goodness of fit for each model can be seen from how well the model explains the data.

In this study, we use R? and AIC value to determine the best model. The R? value has a formula
for computing as follows (Sharif & Kamal, 2018)
_SSE_ . X0 —9)?

SST 2 —¥)?
Then, the AIC value was introduced by Hirotugu Akaike on 1973 as an extension of Maximum
Likelihood (Cavanaugh & Neath, 2019; El-Habil, 2012). The formula of Maximum Likelihood is
written as follows

R?=1 (38)

n _yn i=w?
) e i=1" 7452 (39)

1
L(H'Ub’b ""yn) = f(le ---,ynl,u, O') = <\/2T[_O'

The important idea of AIC is to combine the estimation process with structural and dimension
determination. The AIC formula is written as follows
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RESULTS AND DISCUSSIONS

In this section, we present the results of the modelling and analysis process of MGWR
model. We used data with various aspects including Geography, Economy, Demography,
Education, Health, Disease, Fertility, Energy, Criminality, Disaster, Regional production,
Infrastructure, GDRP, Industry and Tourism. The dataset has a total of 144 variables with MSE
income as the response that has measures in 27 regencies in West Java province. In the following
sections, we estimate the optimal selection parameter 4, predict the important variables and
group variables, check the outliers and classic assumptions, determine the best model and mapp
the significance of each important variable or group variable. The models that will be used are
MGWR with LASSO and MGWR with Group LASSO. In the modelling section, we also use five
different kernels for each model to obtain the best model of MSE income in West Java.

Important Variable Selection

The Mean-Squared Error (MSE) of LASSO and Group LASSO cross-validation process is
shown in Figure 1. In LASSO CV process, 5 or 10 folds are commonly used in the process
(Oyedele, 2023). In this study, we use 5 folds in the CV process. The results of the CV process can
be seen in Figure 1 below. The minimum values of log lambda of LASSO and Group LASSO CV
process, which have the smallest MSE values (Takano & Miyashiro, 2020) successively are 0,1147
and 0,0623.

21 20 18 14 12 8 6 6 5 5 4 4 2 1 1 0 -3.4075658 -2.8326272 -2.2576887 -1.6827502 -1.1078117 -0.5328732

1.2
1.0

08
|

04
[
Least-Squared loss
0.6
| |

Mean-Squared Error

0.2
|

900090’

0.0

Log(r)

(a) (b)
Figure 1. MSE plot of CV LASSO (a) and CV Group LASSO (b)

As displayed in Table 2 and 3, the optimal LASSO and Group LASSO model with
important variables are obtained after employing the best lambda that has the smallest MSE in
the CV process. The important variables in LASSO model are Pulmonary tuberculosis cases (Xg;),
Flood cases (X1¢3), Beef production (X;5,), Number of MSE’s workers (X;7,) and the Number of
MSEs’ expenditure (X;,3) where only these variables that significantly affect the MSE’s income.
Meanwhile in Group LASSO, the important group of variables that were selected in the model
are Fertility (G;), Energy source (Gg), Disaster (G¢) also Industry and Tourism (G;7).

Table 2. Significant coefficient variables for LASSO

Variables Coefficient
X¢2: Pulmonary tuberculosis cases 0,0721
X103: Flood cases 0,1030
X151: Beef production (kg) 0,0371
X172: Number of MSE’s workers 0,1238
X173: Number of MSE’s expenditure (thousand rupiah) 0,6442

192 | JGSA



Rahman et al. J. Geos. Sci. Anal. 1(3): 185-202 (2025)

Table 3. Significant coefficient variables for Group LASSO

Variables Coefficient Variables Coefficient

X71: Number of childbearing age 0,0797 X,04: Forest fires cases 0,0059

couples

X7,: Number of family planning 0,0854 X105: Tornado cases 0,0130

participants

Xg1: Percentage of PLN electricity 0,0119 X,71: Number of MSE 0,0904

users

Xg,: Percentage of gas users 0,0171 X172: Number of MSE’s workers 0,1787

Xg3: Percentage of wood users -0,0155 X,75: Number of MSE's 0,2280
expenditure (thousand rupiah)

Xg4: Percentage of access to 0,0076 X174: Number of Restaurants 0,0577

adequate drinking water

X101: Earthquake cases -0,0022 X175 Number of staying local 0,0384
tourists

X,02: Landslide cases 0,0126 X176: Number of staying foreign 0,0386
tourists

X103: Flood cases 0,0144 X177 Number of visiting local -0,0106
tourists
X175t Number of visiting foreign -0,0150
tourists

Classic Assumption

Before employed to the spatial modelling, the selection variable process results have to be
checked on the classic assumption. The classic assumption test has a crucial role in statistical
modelling to guarantee the result statistical validation (Ainiyah et al., 2016). It involves a
normality test e.g. Kolmogorov-Smirnov normality test (Jureckovd & Picek, 2007) and
heterogeneity test e.g. Breusch-Pagan test (Halunga et al., 2017). This assumption can reduce the
bias of the model and validate the results. As displayed in Table 4, model LASSO and Group
LASSO have a normal distribution because they both have p-value > 0,05, so the HO that said the
model has a normal-like distribution can be accepted. Then, we can also see that the LASSO
model has no constant error because the model has p-value < 0,05, which means a
heteroscedasticity problem occurs in the model, meanwhile the Group LASSO model has
constant error because it has p-value > 0,05. In addition, we can see that LASSO model has
Moran’s I index of 0,0148, which means the data characteristics on each location are clustered.
Meanwhile, in Group LASSO model has a Moran’s I index of -0,0846 which means the data
characteristics on each location are dispersed.

Table 4. Classic assumption and Moran I test for LASSO and Group LASSO model

Tests p-value
LASSO Group LASSO
Kolmogorov-Smirnov normality test 0,4623 0,1154
Breusch-Pagan Heteroscedasticity test 0,0483 0,8425
Moran’s I index
Moran’s I test 0,0148 -0,0846

Another part of the classic assumption is the multicollinearity test, which explains about the
collinearity level among the variables. The collinearity level on the multicollinearity test is measured by
the Variance Inflation Factor (VIF), where variables that have more than 10 of VIF means those variables
have a multicollinearity problem (Daoud, 2017). Table 5 and Table 6 are show the VIF of each important
variables in LASSO and Group LASSO model which we can see all the variables in LASSO model has less
than 10 VIF values, meanwhile in Group LASSO, still there are variables that has more than 10 VIF values
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because the Group LASSO approach reduce the residual sum of square error among the groups which
makes it possible still there is high correlation between variables in the same group (Yunus et al., 2020).

Table 5. Multicollinearity test for LASSO model

Variables VIF
Xe2: Pulmonary tuberculosis cases 3,1623
X103: Flood cases 2,3523
X151: Beef production (kg) 2,4656
X172: Number of MSE’s workers 2,9514
X173: Number of MSE’s expenditure (thousand rupiah) 2,5907

Table 6. Multicollinearity test for Group LASSO model

Variables VIF Variables VIF

X71: Number of childbearing age 342,6608 X104: Forest fires cases 3,7647

couples

X72: Number of family planning 411,0664 Xi05: Tornado cases 19,1444

participants

Xgi: Percentage of PLN electricity 6,3489 X,71: Number of MSE 46,6817

users

Xg,: Percentage of gas users 11,4102 X,7,: Number of MSE’s workers 53,4117

Xg3: Percentage of wood users 36,4436 X,73: Number of MSE’s 12,2694
expenditure (thousand rupiah)

Xg4: Percentage of access to 8,6875 X, 74: Number of Restaurants 1,7907

adequate drinking water

X101: Earthquake cases 9,0078 X175: Number of staying local 34,6214
tourists

X102: Landslide cases 12,1726 X176: Number of staying foreign 30,8445
tourists

X103: Flood cases 28,1466 X177: Number of visiting local 7,2476
tourists
X17¢: Number of visiting foreign 3,0420
tourists

Model Comparison

The accuracy parameters of each model are shown in Table 7. We can see that the best
model is based on the model with the highest R? and the smallest AIC value is MGWR with
Group LASSO in Bi-square kernel function. MGWR model has the highest R? value of 0,9999 or
99,99% which means only 0,01% of error that exists in the model. This model also has AIC value
of 252,4375, which is the smallest AIC value among the other models, and the smaller AIC value
of the model, the more accurate the model will be (Cavanaugh & Neath, 2019).

Table 7. Model Comparison

Model MGWR LASSO MGWR Group LASSO

R Squared AIC R Squared AIC
Bi-square 0,9935 376,0386 0,9999 252,4375
Gaussian 0,9875 387,9883 0,9979 351,4153
Exponential 0,9899 384,4700 0,9985 343,6644
Tricube 0,9931 377,9702 0,9999 263,0751
Boxcar 0,9901 383,4834 0,9975 320,4471
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Best Model Mapping Result

The result of spatial modelling using MGWR with Group LASSO in Bi-square model can
be seen in Table B.4. The table shows that few variables have positive effect on MSE for example,
the Number of childbearing age couples (X7;) which means these variables can increase the MSE
income in West Java. Meanwhile, there are also few variables which have negative effect on MSE
income for example Flood cases (X;93) which means these variables can reduce MSE income in
West Java. From Figure 2 to Figure 5, we can see that on average, only the Number of childbearing
age couples (X;1), Number of family planning participants (X,,), Percentage of PLN electricity
users (Xg1), Percentage of gas users (Xg,), Percentage of access to adequate drinking water (Xg,),
Number of MSE (X;71), Number of MSE workers (X;,,) and Number of MSE's expenditure (X;;3)
which significantly affect the MSE income.
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The spatial modelling result using MGWR with Group LASSO in Bi-square model as the
best model has regression equation on the mean level as follows:

y; = 122608,8334 + 8,5672X5; — 10,2736X,, — 1261,2520Xg, — 28,7324Xg, — 68,7266Xg3
+53,7008Xg, + 523,9789X; 0, + 6,7084X;0, — 18,7635X;03 + 234,3642X104
+ 18,9748X, 5 — 0,4302X,71 + 4,2617X,75 + 1,2506X, 53 + 0,1228X;74
+0,0002X; 75 — 0,0027X;,¢ — 0,0216X,7, + 0,0107X;7¢

For example, the Number of childbearing age couples (X;;) has a mean value of 8,5672, it can be
interpreted that this variable increases the MSE income by 8,5672 for every 1 increment. On the
other hand, the Number of family planning participants (X;,) has a mean value of -10,2736, it can
be interpreted that this variable decreases the MSE income by -10,2736 for every 1 increment
(Maulida, 2013; Rahmawati et al., 2020; Basbay et al., 2016; Brundage et al., 2014; Alemayehu et
al., 2023; Rianty & Rahayu, 2021; Jalaliah et al., 2022). We can also map the significantly affecting
group variables as shown in Figure 6.
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Figure 6. Group of Variables Significance
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