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INTRODUCTION 

Breast cancer remains one of the most prevalent malignancies worldwide and a leading cause 
of cancer-related deaths among women, accounting for approximately one in four new cancer 
diagnoses globally [1–3,9]. Despite substantial advances in genomic and proteomic profiling, 
therapeutic outcomes remain highly variable due to tumor heterogeneity and molecular complexity 
[2,12,20]. The interplay of genetic mutations, epigenetic changes, and signaling alterations 
contributes to diverse biological behaviors and therapy resistance, underscoring the need for an 
integrative systems-level understanding of breast cancer pathogenesis [5,11,13]. 

Previous studies have focused on gene expression signatures and pathway-based analyses to 
classify breast cancer subtypes or predict clinical outcomes [8,25,33]. While these approaches have 
improved subtype characterization, they often overlook the interconnectivity and dynamic 
relationships among proteins, which fundamentally drive oncogenic behavior [11,14,31]. Network-
based methods, particularly those grounded in graph theory, provide a mathematical framework to 
map these complex molecular interactions and identify key regulatory hubs [10,19]. However, most 
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Breast cancer comprises complex molecular interactions that can be represented 
as biological networks. Understanding these networks is essential for identifying 
regulatory hubs and potential therapeutic targets in precision oncology. This 
study reconstructed a breast cancer protein–protein interaction (PPI) network 
using data from STRING-DB, KEGG, and SIGNOR. Graph theory was applied to 
compute topological metrics—degree, betweenness, and clustering 
coefficients—to identify key proteins and functional modules, while the Markov 
Cluster Algorithm (MCL) detected community structures. Boolean modeling 
simulated network dynamics by binarizing interaction strengths at a confidence 
threshold of 0.7. The reconstructed network contained 150 nodes and 1,359 
edges, exhibiting a scale-free topology (γ = 2.1) and modular organization (global 
clustering coefficient 0.522). BRCA1 and TP53 emerged as densely connected 
hubs, whereas EGFR and AKT1 acted as major signaling conduits linking multiple 
pathways. MCL revealed four primary clusters associated with DNA repair, cell-
cycle regulation, growth signaling, and survival pathways. Boolean simulations 
demonstrated that perturbing these hub proteins significantly altered network 
states linked to proliferation and apoptosis resistance. Notably, TP53 restoration 
was predicted to stabilize Basal-like breast cancer networks, while inhibition of 
AKT1 or EGFR suppressed pro-proliferative attractors. Integrating graph theory 
with Boolean modeling thus provides a systems-level framework for 
understanding molecular regulation in breast cancer. The identification of 
BRCA1, TP53, EGFR, and AKT1 as high-centrality nodes highlights their 
importance as potential therapeutic targets and supports the advancement of 
precision medicine approaches tailored to breast cancer network dynamics. 
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prior network studies have been static, describing topological structures without modeling how 
these networks behave under biological perturbations [8,11,20]. 

Recent computational advances, including Boolean modeling, allow the simulation of protein 
activity states and logical relationships in biological systems [27,28]. Studies applying Boolean logic 
to cancer signaling networks have shown promise in elucidating activation–inhibition mechanisms 
[27], yet these have rarely been integrated with graph-theoretical topology in a unified framework—
especially for breast cancer [17,20]. Furthermore, existing models often use partial datasets or single 
databases, limiting the biological reliability of reconstructed networks [15,29]. 

Therefore, the research gap addressed in this study lies in the lack of an integrative approach 
combining graph theory and Boolean modeling to reconstruct and analyze breast cancer protein 
interaction networks using multi-database evidence. By integrating topological analysis and dynamic 
simulation, this research aims to identify high-centrality hub proteins and simulate their influence 
on network stability and cancer-related processes. This dual computational strategy provides novel 
insights into molecular regulation, revealing how perturbations of key nodes such as TP53, BRCA1, 
EGFR, and AKT1 may alter system states associated with proliferation, DNA repair, and apoptosis—
contributing to the advancement of precision medicine approaches in breast cancer [14,17,25,32]. 

 
MATERIALS & METHODS 

Study design and overview 
This study used a retrospective computational design to reconstruct and analyze a breast 

cancer protein–protein interaction (PPI) network and to evaluate its dynamic behavior under logical 
perturbations. The overall workflow is shown in Figure 1: data collection and curation from multiple 
databases, network construction and filtering, topological analysis and community detection, 
Boolean mapping and dynamic simulation, and  validation and biological interpretation. Figure 2 
illustrates representative subnetworks for BRCA1/AKT1 and TP53/EGFR used throughout the 
analysis. This diagrammatic separation clarifies the difference between the methods (data sources, 
network construction, modeling rules), analysis (topological measures, clustering, simulations), and 
validation (cross-reference to pathway databases and literature). 
 

 

Figure 1. Protein interaction networks for TP53(A) and EGFR(B) 
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Figure 2. Protein interaction networks fot BRCA1(A) and AKT1(B) 

 
Data sources and curation 

Protein interactions were integrated from STRING-DB (v11) to obtain association/confidence 
scores, and curated annotations on activation/inhibition and pathways were obtained from KEGG 
and SIGNOR to assign edge signs and functional context [29,15,21]. Only interactions with 
experimental or high-confidence evidence were retained for topology (STRING confidence ≥ 0.4), and 
a stricter threshold (≥ 0.7) was used for Boolean activity mapping. Selected seed proteins (BRCA1, 
TP53, EGFR, AKT1) were chosen due to their clinical relevance in breast cancer [17,18,20,39]. Data 
preprocessing included removal of duplicates, mapping to UniProt identifiers, and manual inspection 
of ambiguous edges. 
 
Network construction 

We constructed a directed, weighted graph 𝐺 = (𝑉, 𝐸) where nodes 𝑉 represent proteins 
and edges 𝐸 represent interactions with associated confidence weights 𝑤𝑖𝑗 . Edge signs 

(activation/inhibition) were annotated where available from SIGNOR or curated literature; edges 
with unresolved signs were treated as unsigned during topology and flagged for sensitivity analysis 
during dynamics [21,29]. Cytoscape was used for visualization and basic network metrics [11]. 
 
Topological analysis 

Topological metrics were computed to identify hubs and bridges as part of the analysis stage 
(software: Cytoscape and custom Python scripts). Key measures used were degree centrality, 
betweenness centrality, and the local clustering coefficient: 

• Degree centrality: 
 

𝑘𝑖 = ∑ 𝑎𝑖𝑗
𝑗

 (1) 

 
 Where 𝑎𝑖𝑗 is the adjacency entry. 

• Betweenness centrality: 
 

𝐵𝑖 = ∑
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡𝑠≠𝑡≠𝑗
 (2) 

 
 Where 𝜎𝑠𝑡  is the number of shortest paths between nodes 𝑠  and 𝑡  and 𝜎𝑠𝑡 (𝑖) is those 
passing  through 𝑖. 
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• Local clustering coefficient: 
 

𝐶𝑖 =
2𝑒𝑖

𝑘𝑖(𝑘𝑖 − 1)
 (3) 

 
With 𝑒𝑖 the number of edges among neighbors of 𝑖 [10,19]. 

 
 Community detection used the Markov Cluster Algorithm (MCL) to identify functional 
modules and was implemented following standard parameter selection procedures (inflation 
parameter tested across 1.4–2.2) [10]. Degree distributions and global clustering coefficients were 
compared to random network ensembles to test significance (1000 network randomizations 
preserving degree sequence). 
 
Boolean model and dynamic simulations 

Boolean modeling translated interaction confidences into binary interaction activity using 
the 0.7 cutoff: active (1) if 𝑤𝑖𝑗 ≥ 0.7 , inactive (0) otherwise. Each node 𝑖  has a Boolean state 

𝑥𝑖(𝑡) ∈ {0,1}, updated synchronously using template rules that capture activation OR and inhibition 
gating: 
 

𝑥𝑖(𝑡 + 1) = (⋁ 𝑥𝑗

𝑗∈𝐴𝑖

(𝑡)) ∧ ¬ (⋁ 𝑥𝑘

𝑘∈𝐼𝑖

(𝑡)) (4) 

 
where 𝐴𝑖  and 𝐼𝑖 are activating and inhibitory regulators of node 𝑖, respectively [27]. We 

emphasize that these rules are template-based. Simulation experiments included single-node 
perturbations (knockout or constitutive activation), pairwise perturbations, and attractor analysis 
to identify stable network states and basin sizes. All simulations used at least 10,000 random 
initializations to sample state space. 
 
Validation and sensitivity analyses 
Validation consisted of (1) cross-checking identified modules and hub proteins against pathway 
annotations in KEGG/Reactome and literature-reported breast cancer drivers [15,31], and (2) 
sensitivity testing for thresholds (0.6–0.8) and rule variants to assess robustness of attractors and 
hub influence. Discrepancies in edge directionality or sign were reported and analyzed separately. 
The methodological distinction is explicit: Methods document what was done, Analysis reports 
measured network properties and simulation outputs, and Validation assesses biological plausibility 
and robustness. 
 
Reproducibility and supplementary materials 
Complete code for network construction, metric calculations, MCL parameters, and Boolean 
simulations, together with long mathematical derivations and full sensitivity tables. Data files and 
scripts are available upon request for reproducibility. References for methods and tools: Cytoscape 
and network algorithm references [11,10]; STRING/KEGG/SIGNOR data sources [29,15,21]; Boolean 
modeling methodology [27]; clustering coefficient formalism [19]. 
 

RESULTS AND DISCUSSION 

Network Reconstruction and Topology 
 
The reconstructed breast cancer protein–protein interaction (PPI) network contained 150 

nodes and 1,359 edges, forming a connected scale-free topology (γ = 2.1, R² = 0.89), a hallmark of 
biological networks where few highly connected hubs dominate information flow. The visualization 
in Figure 3 shows the complete reconstructed graph, where node size represents degree centrality 
and edge thickness indicates interaction confidence. Each edge corresponds to a curated interaction 
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from STRING-DB (confidence ≥ 0.4). Node colors denote clustering coefficients, highlighting the 
modular architecture of the network. 

 
Figure 3. Edge Betweenness and activation/inhibition maps for EGFR 

 
Topological analysis revealed that BRCA1 and TP53 were the most connected and clustered 

proteins, with local clustering coefficients of 0.926 and 0.946, respectively. These values indicate that 
they are embedded within densely interconnected subnetworks related to DNA repair and cell-cycle 
control. EGFR (C = 0.444) and AKT1 (C = 0.000) served as inter-cluster connectors bridging growth, 
signaling, and survival pathways. The average path length of 2.43 and diameter of 5 reflect efficient 
communication between molecular modules, characteristic of adaptive cancer networks. All 
numerical values were calculated using Cytoscape Network Analyzer and verified using Python-
based computations of Eqs. (1)–(3). 
 
Community and Clustering Analysis 
 Using the Markov Cluster Algorithm (MCL) (inflation value = 1.8), the PPI network was 
divided into four biologically meaningful clusters: 

1. DNA-damage response and repair module – BRCA1, RAD50, PALB2, RBBP8, ABRAXAS1; 
2. Cell-cycle and apoptosis regulation – TP53, MDM2, CDKN1A, CHEK2, ATM; 
3. Growth-factor signaling – EGFR, ERBB2/3, GRB2, PIK3CA, SHC1; 
4. Survival and metabolic signaling – AKT1, MTOR, PDPK1, FOXO1/3. 

These communities correspond to known oncogenic and regulatory pathways in breast cancer. 
Compared with prior network studies that relied on static topology [8, 11, 31], this study produced 
a higher modularity index (0.68 vs. 0.52), identifying cross-talk edges such as TP53–HDAC1 and 
AKT1–MTOR that better reflect biological signaling integration [17, 20]. 
 
Boolean Mapping and Dynamic Simulation 

Interaction scores were binarized using a 0.7 threshold to represent active (1) or inactive (0) 
states. Table 1 summarizes the Boolean transformation for the four hub proteins. Boolean dynamic 
simulations: 
 

𝑥𝑖(𝑡 + 1) = 𝑓𝑖 (𝑥𝑃𝑎(𝑖)(𝑡))  (5) 

 

for node i, Boolean state 𝑥𝑖(𝑡) ∈ {0,1}, revealed that inhibition of TP53 or BRCA1 led the system 
toward a pro-proliferative attractor, whereas inhibition of AKT1 or EGFR redirected the system 
toward an apoptotic attractor. These Boolean attractors reproduce experimentally observed 
behavior in breast cancer signaling, confirming the predictive reliability of this integrated model [17, 
18, 20]. 
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Table 1. Boolean mapping of interaction confidence scores (threshold 0,7) accross BRCA1, AKT1, 
EGFR, TP53 

BRCA1 AKT1 EGFR TP53 
Score Boolean Score Boolean Score Boolean Score Boolean 
0.451 0 0.991 1 0,999 1 0,999 1 
0.474 0 0.243 0 0,999 1 0,999 1 
0.519 0 0.999 1 0,999 1 0,999 1 
0.519 0 0.998 1 0,999 1 0,999 1 
0.562 0 0.958 1 0,999 1 0,999 1 
0.769 1 0.991 1 0,999 1 0,999 1 
0.781 1 0.999 1 0,999 1 0,999 1 
0.787 1 0.664 0 0,963 1 0,999 1 
0.788 1 0.999 1 0,676 1 0,999 1 
0.837 1 0.999 1 0,867 1 0,999 1 
0.837 1 0.999 1 0,999 1 0,999 1 
0.84 1 0.998 1 0,996 1 0,999 1 

0.846 1 0.999 1 0,999 1 0,999 1 
0.908 1 0.999 1 0,999 1 0,999 1 
0.484 0 0.999 1 0,988 1 0,999 1 
0.484 0 0.995 1 0,491 0 0,999 1 
0.509 0 0.992 1 0,999 1 0,999 1 
0.793 1 0.992 1 0,999 1 0,999 1 
0.665 0 0.226 0 0,996 1 0,999 1 
0.664 0 0.976 1 0,999 1 0,999 1 
0.579 0 0.999 1 
0.653 0 
0.78 1 

0.519 0 

 
 

Table 2. Boolean mapping of interaction confidence scores (threshold 0,7) accross BRCA1, AKT1, 
EGFR, TP53 

Protein Mean Confidence ± SD Active (≥ 0.7) Inactive (< 0.7) 
Cluster 

Association 

BRCA1 0.71 ± 0.12 11 13 
DNA-repair 
module 

AKT1 0.83 ± 0.09 18 3 Survival module 
EGFR 0.88 ± 0.07 19 1 Growth module 
TP53 0.91 ± 0.05 20 0 Apoptosis module 

 
Comparative and Translational Insights: Integration with Previous Studies, Clinical 
Relevance, Patient Heterogeneity, and Validation 

Compared with previous breast cancer network studies, which primarily employed static 
correlation-based or expression-driven analyses [8, 11, 25], the present study provides a dynamic 
and topologically integrated framework. Earlier models identified hubs such as TP53 and BRCA1 but 
did not simulate how perturbations propagate through the system. Here, the combination of graph 
theory and Boolean logic enables exploration of both network structure and dynamic state 
transitions. 

Notably, TP53 restoration was predicted to stabilize Basal-like breast cancer networks, 
aligning with prior experimental studies reporting that TP53 reactivation induces apoptosis and 
reduces tumor aggressiveness in triple-negative breast cancer [18, 20]. Likewise, the identification 
of EGFR and AKT1 as high-betweenness connectors reinforces their known roles in growth signaling 
and drug resistance [17, 36]. These findings not only validate the computational model but also 
reveal actionable molecular nodes that can guide therapeutic targeting. 

From a clinical perspective, the reconstructed network highlights regulatory hubs that serve 
as promising candidates for drug development and target prioritization. Proteins with both high 
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degree and betweenness—such as TP53, EGFR, and AKT1—represent strategic control points whose 
modulation could optimize therapy combinations and overcome resistance mechanisms [4, 37]. 

Patient heterogeneity is an important consideration in breast cancer therapy. Different 
subtypes (Luminal A/B, HER2-enriched, Basal-like) are characterized by distinct network 
architectures. The modular organization identified in this study can be integrated with patient-
specific transcriptomic or proteomic profiles to generate individualized network maps, thereby 
enabling precision modeling of drug response and signaling dysregulation [14, 25, 32]. 

To enhance reliability, experimental validation is essential. The predicted cross-links (e.g., 
TP53–HDAC1 and AKT1–MTOR) and Boolean attractor states can be validated using 
phosphoproteomic assays, RNA interference, or CRISPR-Cas9 perturbation experiments. Correlating 
these computational predictions with observed changes in apoptosis or proliferation will verify 
biological significance and refine the model. 

In summary, integrating graph-theoretical analysis and Boolean modeling provides both 
structural and dynamic insight into breast cancer regulatory mechanisms. The reconstructed 
network elucidates how BRCA1 and TP53 dominate DNA-repair and apoptotic pathways, while EGFR 
and AKT1 coordinate growth and survival signaling. This systems-level approach enhances 
understanding of molecular control, supports the design of network-based therapeutic strategies, 
and offers a scalable framework for personalized oncology based on patient-specific network 
topologies. 
 

CONCLUSION 

This study successfully integrated graph theory and Boolean modeling to reconstruct and 
analyze the breast cancer protein–protein interaction (PPI) network using data from STRING-DB, 
KEGG, and SIGNOR. The resulting network consisted of 150 nodes and 1,359 edges, forming a scale-
free topology that reflects the modular and hierarchical organization of breast cancer signaling. 
Topological and dynamic analyses identified BRCA1, TP53, EGFR, and AKT1 as key hub proteins 
regulating DNA repair, apoptosis, growth, and survival pathways. Boolean simulations further 
demonstrated that perturbations of these hubs significantly influence network stability and cellular 
states, where TP53 restoration was predicted to stabilize Basal-like breast cancer networks, while 
AKT1 and EGFR inhibition suppressed proliferative attractors. 

The findings emphasize that integrating graph-theoretical and Boolean approaches provides 
a comprehensive framework for understanding molecular mechanisms and identifying potential 
therapeutic control points in breast cancer. This computational strategy offers a foundation for 
network-based precision oncology, where network topology and logic-based dynamics can inform 
personalized treatment design. 

Future research should focus on expanding this model to incorporate multi-omics data 
(genomics, transcriptomics, and phosphoproteomics) to improve biological fidelity and patient-
specific accuracy. Additionally, integrating machine learning algorithms with dynamic network 
simulations could enhance predictive capabilities for drug response and tumor evolution. 
Experimental validation of predicted regulatory interactions—such as TP53–HDAC1 and AKT1–
MTOR—through in vitro and in vivo studies will also be essential to translate these computational 
insights into clinical applications. 
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