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Breast cancer comprises complex molecular interactions that can be represented
as biological networks. Understanding these networks is essential for identifying
regulatory hubs and potential therapeutic targets in precision oncology. This
study reconstructed a breast cancer protein-protein interaction (PPI) network
using data from STRING-DB, KEGG, and SIGNOR. Graph theory was applied to
compute topological metrics—degree, betweenness, and clustering
coefficients—to identify key proteins and functional modules, while the Markov
Cluster Algorithm (MCL) detected community structures. Boolean modeling
simulated network dynamics by binarizing interaction strengths at a confidence
threshold of 0.7. The reconstructed network contained 150 nodes and 1,359
edges, exhibiting a scale-free topology (y = 2.1) and modular organization (global
clustering coefficient 0.522). BRCA1 and TP53 emerged as densely connected
hubs, whereas EGFR and AKT1 acted as major signaling conduits linking multiple

pathways. MCL revealed four primary clusters associated with DNA repair, cell-
cycle regulation, growth signaling, and survival pathways. Boolean simulations
demonstrated that perturbing these hub proteins significantly altered network
states linked to proliferation and apoptosis resistance. Notably, TP53 restoration
was predicted to stabilize Basal-like breast cancer networks, while inhibition of
AKT1 or EGFR suppressed pro-proliferative attractors. Integrating graph theory
with Boolean modeling thus provides a systems-level framework for
understanding molecular regulation in breast cancer. The identification of
BRCA1, TP53, EGFR, and AKT1 as high-centrality nodes highlights their
importance as potential therapeutic targets and supports the advancement of
precision medicine approaches tailored to breast cancer network dynamics.
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INTRODUCTION

Breast cancer remains one of the most prevalent malignancies worldwide and a leading cause
of cancer-related deaths among women, accounting for approximately one in four new cancer
diagnoses globally [1-3,9]. Despite substantial advances in genomic and proteomic profiling,
therapeutic outcomes remain highly variable due to tumor heterogeneity and molecular complexity
[2,12,20]. The interplay of genetic mutations, epigenetic changes, and signaling alterations
contributes to diverse biological behaviors and therapy resistance, underscoring the need for an
integrative systems-level understanding of breast cancer pathogenesis [5,11,13].

Previous studies have focused on gene expression signatures and pathway-based analyses to
classify breast cancer subtypes or predict clinical outcomes [8,25,33]. While these approaches have
improved subtype characterization, they often overlook the interconnectivity and dynamic
relationships among proteins, which fundamentally drive oncogenic behavior [11,14,31]. Network-
based methods, particularly those grounded in graph theory, provide a mathematical framework to
map these complex molecular interactions and identify key regulatory hubs [10,19]. However, most
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prior network studies have been static, describing topological structures without modeling how
these networks behave under biological perturbations [8,11,20].

Recent computational advances, including Boolean modeling, allow the simulation of protein
activity states and logical relationships in biological systems [27,28]. Studies applying Boolean logic
to cancer signaling networks have shown promise in elucidating activation-inhibition mechanisms
[27], yet these have rarely been integrated with graph-theoretical topology in a unified framework—
especially for breast cancer [17,20]. Furthermore, existing models often use partial datasets or single
databases, limiting the biological reliability of reconstructed networks [15,29].

Therefore, the research gap addressed in this study lies in the lack of an integrative approach
combining graph theory and Boolean modeling to reconstruct and analyze breast cancer protein
interaction networks using multi-database evidence. By integrating topological analysis and dynamic
simulation, this research aims to identify high-centrality hub proteins and simulate their influence
on network stability and cancer-related processes. This dual computational strategy provides novel
insights into molecular regulation, revealing how perturbations of key nodes such as TP53, BRCA1,
EGFR, and AKT1 may alter system states associated with proliferation, DNA repair, and apoptosis—
contributing to the advancement of precision medicine approaches in breast cancer [14,17,25,32].

MATERIALS & METHODS

Study design and overview

This study used a retrospective computational design to reconstruct and analyze a breast
cancer protein-protein interaction (PPI) network and to evaluate its dynamic behavior under logical
perturbations. The overall workflow is shown in Figure 1: data collection and curation from multiple
databases, network construction and filtering, topological analysis and community detection,
Boolean mapping and dynamic simulation, and validation and biological interpretation. Figure 2
illustrates representative subnetworks for BRCA1/AKT1 and TP53/EGFR used throughout the
analysis. This diagrammatic separation clarifies the difference between the methods (data sources,
network construction, modeling rules), analysis (topological measures, clustering, simulations), and
validation (cross-reference to pathway databases and literature).

—, RPA1
P, §

DCN

Figure 1. Protein interaction networks for TP53(A) and EGFR(B)
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Figure 2. Protein interaction networks fot BRCA1(A) and AKT1(B)

Data sources and curation

Protein interactions were integrated from STRING-DB (v11) to obtain association/confidence
scores, and curated annotations on activation/inhibition and pathways were obtained from KEGG
and SIGNOR to assign edge signs and functional context [29,15,21]. Only interactions with
experimental or high-confidence evidence were retained for topology (STRING confidence 2 0.4), and
a stricter threshold (= 0.7) was used for Boolean activity mapping. Selected seed proteins (BRCA1,
TP53, EGFR, AKT1) were chosen due to their clinical relevance in breast cancer [17,18,20,39]. Data
preprocessing included removal of duplicates, mapping to UniProt identifiers, and manual inspection
of ambiguous edges.

Network construction

We constructed a directed, weighted graph G = (V,E) where nodes V represent proteins
and edges FE represent interactions with associated confidence weights w;; . Edge signs
(activation/inhibition) were annotated where available from SIGNOR or curated literature; edges
with unresolved signs were treated as unsigned during topology and flagged for sensitivity analysis
during dynamics [21,29]. Cytoscape was used for visualization and basic network metrics [11].

Topological analysis

Topological metrics were computed to identify hubs and bridges as part of the analysis stage
(software: Cytoscape and custom Python scripts). Key measures used were degree centrality,
betweenness centrality, and the local clustering coefficient:

e Degree centrality:
ki = Z}_ aij (1)

Where a;; is the adjacency entry.
e Betweenness centrality:
o5t (1)
B=y B 2
s#t#j Ost

Where o is the number of shortest paths between nodes s and t and g (i) is those
passing through 1.
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e Local clustering coefficient:

Zei

C=——t
boki(ki—1)

(3)

With e; the number of edges among neighbors of i [10,19].

Community detection used the Markov Cluster Algorithm (MCL) to identify functional
modules and was implemented following standard parameter selection procedures (inflation
parameter tested across 1.4-2.2) [10]. Degree distributions and global clustering coefficients were
compared to random network ensembles to test significance (1000 network randomizations
preserving degree sequence).

Boolean model and dynamic simulations

Boolean modeling translated interaction confidences into binary interaction activity using
the 0.7 cutoff: active (1) if w;; = 0.7, inactive (0) otherwise. Each node i has a Boolean state
x;(t) € {0,1}, updated synchronously using template rules that capture activation OR and inhibition
gating:

X(E+1) = \/xj(t) A \/xk(t) )

JEA; KEI;

where A; and I; are activating and inhibitory regulators of node i, respectively [27]. We
emphasize that these rules are template-based. Simulation experiments included single-node
perturbations (knockout or constitutive activation), pairwise perturbations, and attractor analysis
to identify stable network states and basin sizes. All simulations used at least 10,000 random
initializations to sample state space.

Validation and sensitivity analyses

Validation consisted of (1) cross-checking identified modules and hub proteins against pathway
annotations in KEGG/Reactome and literature-reported breast cancer drivers [15,31], and (2)
sensitivity testing for thresholds (0.6-0.8) and rule variants to assess robustness of attractors and
hub influence. Discrepancies in edge directionality or sign were reported and analyzed separately.
The methodological distinction is explicit: Methods document what was done, Analysis reports
measured network properties and simulation outputs, and Validation assesses biological plausibility
and robustness.

Reproducibility and supplementary materials

Complete code for network construction, metric calculations, MCL parameters, and Boolean
simulations, together with long mathematical derivations and full sensitivity tables. Data files and
scripts are available upon request for reproducibility. References for methods and tools: Cytoscape
and network algorithm references [11,10]; STRING/KEGG/SIGNOR data sources [29,15,21]; Boolean
modeling methodology [27]; clustering coefficient formalism [19].

RESULTS AND DISCUSSION
Network Reconstruction and Topology
The reconstructed breast cancer protein-protein interaction (PPI) network contained 150
nodes and 1,359 edges, forming a connected scale-free topology (y = 2.1, R? = 0.89), a hallmark of
biological networks where few highly connected hubs dominate information flow. The visualization

in Figure 3 shows the complete reconstructed graph, where node size represents degree centrality
and edge thickness indicates interaction confidence. Each edge corresponds to a curated interaction
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from STRING-DB (confidence = 0.4). Node colors denote clustering coefficients, highlighting the
modular architecture of the network.

DCN
HBEGF

EGF

Y
@ =
EREG T
5999
ERBB3 m 0.996] 3
jo-999} :EE::EE =
ERBB2 e 0.999 R
0.999 L
cBL o =)
o 0.676}
GAB1 ;
.95 —
jo.559)
CDH1
e
=
PIK3CA =

Figure 3. Edge Betweenness and activation/inhibition maps for EGFR

Topological analysis revealed that BRCA1 and TP53 were the most connected and clustered
proteins, with local clustering coefficients of 0.926 and 0.946, respectively. These values indicate that
they are embedded within densely interconnected subnetworks related to DNA repair and cell-cycle
control. EGFR (C = 0.444) and AKT1 (C = 0.000) served as inter-cluster connectors bridging growth,
signaling, and survival pathways. The average path length of 2.43 and diameter of 5 reflect efficient
communication between molecular modules, characteristic of adaptive cancer networks. All
numerical values were calculated using Cytoscape Network Analyzer and verified using Python-
based computations of Egs. (1)-(3).

Community and Clustering Analysis
Using the Markov Cluster Algorithm (MCL) (inflation value = 1.8), the PPI network was

divided into four biologically meaningful clusters:

1. DNA-damage response and repair module - BRCA1, RAD50, PALB2, RBBP8, ABRAXAS1;

2. Cell-cycle and apoptosis regulation - TP53, MDM2, CDKN1A, CHEK2, ATM;

3. Growth-factor signaling - EGFR, ERBB2/3, GRB2, PIK3CA, SHC1;

4. Survival and metabolic signaling - AKT1, MTOR, PDPK1, FOX01/3.
These communities correspond to known oncogenic and regulatory pathways in breast cancer.
Compared with prior network studies that relied on static topology [8, 11, 31], this study produced
a higher modularity index (0.68 vs. 0.52), identifying cross-talk edges such as TP53-HDAC1 and
AKT1-MTOR that better reflect biological signaling integration [17, 20].

Boolean Mapping and Dynamic Simulation

Interaction scores were binarized using a 0.7 threshold to represent active (1) or inactive (0)
states. Table 1 summarizes the Boolean transformation for the four hub proteins. Boolean dynamic
simulations:

xi(t +1) = fi (Xpac (©)) (5)

for node i, Boolean state x;(t) € {0,1}, revealed that inhibition of TP53 or BRCA1 led the system
toward a pro-proliferative attractor, whereas inhibition of AKT1 or EGFR redirected the system
toward an apoptotic attractor. These Boolean attractors reproduce experimentally observed
behavior in breast cancer signaling, confirming the predictive reliability of this integrated model [17,
18, 20].
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Table 1. Boolean mapping of interaction confidence scores (threshold 0,7) accross BRCA1, AKT1,

EGFR, TP53

BRCA1 AKT1 EGFR TP53
Score Boolean Score Boolean Score Boolean Score Boolean

0.991 1 0,999 1 0,999 1

0,999 1 0,999 1

1 0,999 1 0,999 1

1 0,999 1 0,999 1

1 0,999 1 0,999 1

0.769 1 0.991 1 0,999 1 0,999 1

0.781 1 0.999 1 0,999 1 0,999 1

0.787 1 0,963 1 0,999 1

0.788 1 0.999 1 0,999 1

0.837 1 0.999 1 0,867 1 0,999 1

0.837 1 0.999 1 0,999 1 0,999 1

0.84 1 0.998 1 0,996 1 0,999 1

0.846 1 0.999 1 0,999 1 0,999 1

0.908 1 0.999 1 0,999 1 0,999 1

0.999 1 0,988 1 0,999 1

0.995 1 OESTNO 0,999 1

0.992 1 0,999 1 0,999 1

1 1 0,999 1 0,999 1

0,996 1 0,999 1

0,999 1 0,999 1

B Aktif
B Tidak Aktif

Table 2. Boolean mapping of interaction confidence scores (threshold 0,7) accross BRCA1, AKT1,
EGFR, TP53

Protein Mean Confidence + SD  Active (2 0.7) Inactive (< 0.7) Cl“s.te.r
Association
BRCA1 0.71+0.12 11 13 DNA-repair
module
AKT1 0.83 £0.09 18 3 Survival module
EGFR 0.88+0.07 19 1 Growth module
TP53 0.91 + 0.05 20 0 Apoptosis module

Comparative and Translational Insights: Integration with Previous Studies, Clinical
Relevance, Patient Heterogeneity, and Validation

Compared with previous breast cancer network studies, which primarily employed static
correlation-based or expression-driven analyses [8, 11, 25], the present study provides a dynamic
and topologically integrated framework. Earlier models identified hubs such as TP53 and BRCA1 but
did not simulate how perturbations propagate through the system. Here, the combination of graph
theory and Boolean logic enables exploration of both network structure and dynamic state
transitions.

Notably, TP53 restoration was predicted to stabilize Basal-like breast cancer networks,
aligning with prior experimental studies reporting that TP53 reactivation induces apoptosis and
reduces tumor aggressiveness in triple-negative breast cancer [18, 20]. Likewise, the identification
of EGFR and AKT1 as high-betweenness connectors reinforces their known roles in growth signaling
and drug resistance [17, 36]. These findings not only validate the computational model but also
reveal actionable molecular nodes that can guide therapeutic targeting.

From a clinical perspective, the reconstructed network highlights regulatory hubs that serve
as promising candidates for drug development and target prioritization. Proteins with both high
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degree and betweenness—such as TP53, EGFR, and AKT1—represent strategic control points whose
modulation could optimize therapy combinations and overcome resistance mechanisms [4, 37].

Patient heterogeneity is an important consideration in breast cancer therapy. Different
subtypes (Luminal A/B, HER2-enriched, Basal-like) are characterized by distinct network
architectures. The modular organization identified in this study can be integrated with patient-
specific transcriptomic or proteomic profiles to generate individualized network maps, thereby
enabling precision modeling of drug response and signaling dysregulation [14, 25, 32].

To enhance reliability, experimental validation is essential. The predicted cross-links (e.g.,
TP53-HDAC1 and AKT1-MTOR) and Boolean attractor states can be validated using
phosphoproteomic assays, RNA interference, or CRISPR-Cas9 perturbation experiments. Correlating
these computational predictions with observed changes in apoptosis or proliferation will verify
biological significance and refine the model.

In summary, integrating graph-theoretical analysis and Boolean modeling provides both
structural and dynamic insight into breast cancer regulatory mechanisms. The reconstructed
network elucidates how BRCA1 and TP53 dominate DNA-repair and apoptotic pathways, while EGFR
and AKT1 coordinate growth and survival signaling. This systems-level approach enhances
understanding of molecular control, supports the design of network-based therapeutic strategies,
and offers a scalable framework for personalized oncology based on patient-specific network
topologies.

CONCLUSION

This study successfully integrated graph theory and Boolean modeling to reconstruct and
analyze the breast cancer protein-protein interaction (PPI) network using data from STRING-DB,
KEGG, and SIGNOR. The resulting network consisted of 150 nodes and 1,359 edges, forming a scale-
free topology that reflects the modular and hierarchical organization of breast cancer signaling.
Topological and dynamic analyses identified BRCA1, TP53, EGFR, and AKT1 as key hub proteins
regulating DNA repair, apoptosis, growth, and survival pathways. Boolean simulations further
demonstrated that perturbations of these hubs significantly influence network stability and cellular
states, where TP53 restoration was predicted to stabilize Basal-like breast cancer networks, while
AKT1 and EGFR inhibition suppressed proliferative attractors.

The findings emphasize that integrating graph-theoretical and Boolean approaches provides
a comprehensive framework for understanding molecular mechanisms and identifying potential
therapeutic control points in breast cancer. This computational strategy offers a foundation for
network-based precision oncology, where network topology and logic-based dynamics can inform
personalized treatment design.

Future research should focus on expanding this model to incorporate multi-omics data
(genomics, transcriptomics, and phosphoproteomics) to improve biological fidelity and patient-
specific accuracy. Additionally, integrating machine learning algorithms with dynamic network
simulations could enhance predictive capabilities for drug response and tumor evolution.
Experimental validation of predicted regulatory interactions—such as TP53-HDAC1 and AKT1-
MTOR—through in vitro and in vivo studies will also be essential to translate these computational
insights into clinical applications.
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