Compliance test of field area conformity and beam straightness on x-ray machines in radiological installation

Authors

  • Raditya Faradina Pratiwi Universitas Pertahanan RI, Indonesia Author
  • Muthmainnah Universitas Pertahanan RI, Indonesia Author
  • Yanda Rahmatul Putra ATRO Nusantara, Indonesia Author
  • Imastuti Universitas Pertahanan RI, Indonesia Author
  • Mufti Labib Ahmada Atmadi Universitas Pertahanan RI, Indonesia Author

DOI:

https://doi.org/10.58524/19ysc434

Keywords:

Compliance Test , X-ray machines , Conformity Test , Collimator

Abstract

Compliance testing of diagnostic X-ray equipment is an essential part of quality control to ensure image accuracy and patient safety. This study evaluated the conformity of collimator illumination, collimation accuracy, and X-ray beam alignment in a hospital radiology unit. Measurements were carried out using a collimator and beam alignment test tool at a source-to-image distance (SID) of 100 cm. Illumination was measured five times in four quadrants. Collimation deviation was determined by comparing the X-ray and light field edges along the X and Y axes, expressed as % SID. Beam straightness was evaluated using the steel ball superposition method, and the deviation angle was calculated based on geometric displacement. Illumination values exceeded 100 lux in all quadrants. Collimation deviation was 1.5 ± 0.05 % SID, within the permissible tolerance of ≤ 2% SID as specified by BAPETEN Regulation No. 2 of 2022. Beam straightness deviation was 1.20 ± 0.05°, within the permissible limit of ≤ 3°. The tested X-ray unit met national compliance standards for illumination, collimation, and beam alignment. These findings highlight the importance of periodic quality control testing to maintain patient safety, minimize unnecessary radiation exposure, and ensure high-quality diagnostic images

References

[1] Bushong SC. Radiologic science for technologists. 10th ed. St. Louis (MO): Mosby; 2017.

[2] Maoras BM. Practical guide in quality assurance. New York: John Wiley & Sons; 1990.

[3] Papp J. Quality management in the imaging sciences. 3rd ed. St. Louis (MO): Mosby Elsevier; 2011.

[4] Wiyono A. Pengujian kolimator dengan menggunakan RMI collimator dan beam alignment test tool pada pesawat Sinar-X merk Siemens Polymobile Plus di Instansi Radiologi RSUP dr. Sardjito Yogyakarta [Skripsi]. Semarang: Jurusan Teknik Radiodiagnostik dan Radioterapi, Politeknik Kesehatan Depkes Semarang; 2010.

[5] BAPETEN. Peraturan Kepala Nomor 9 Tahun 2011 tentang Uji Kesesuaian Pesawat Sinar-X Radiologi Diagnostik dan Intervensional. Jakarta: BAPETEN; 2011.

[6] Hastuti P, Syafitri I, Susanto W. Uji kesesuaian sebagai aspek penting dalam pengawasan penggunaan pesawat Sinar-X di fasilitas radiologi diagnostik. In: Prosiding Seminar Nasional Sains dan Teknologi Nuklir. Bandung: Pusat Pengkajian Sistem dan Teknologi Pengawasan Fasilitas Radiasi dan Zat Radioaktif; 2013.

[7] BAPETEN. Peraturan Badan Pengawas Tenaga Nuklir Republik Indonesia Nomor 2 Tahun 2022 tentang Uji Kesesuaian Pesawat Sinar-X Radiologi Diagnostik dan Intervensional. Jakarta: BAPETEN; 2022.

[8] BATAN. Pedoman keselamatan dan proteksi radiasi kawasan nuklir Serpong. Serpong: BATAN; 2013.

[9] Begum M, Mollah AS, Zaman MA, Rahman AKMM. Quality control tests in some diagnostic X-ray units in Bangladesh. Bangladesh J Med Phys. 2011;4(1):58–66.

[10] Chadidjah S. Penentuan ketepatan titik pusat berkas sinar pada pesawat mobile X-ray sebagai parameter kualitas kontrol di RSUD Prof. Dr. Hm. Anwar Makkatutu Bantaeng [Skripsi]. Makassar: FMIPA Universitas Hasanuddin; 2012.

[11] Dwi Seno KS. Workshop tentang batas toleransi pengukuran uji kesesuaian pesawat Sinar-X. Depok: Departemen Fisika, Universitas Indonesia; 2010.

[12] Kementerian Kesehatan Republik Indonesia. Pedoman kendali mutu (Quality Control) peralatan radiodiagnostik. SK No. 1250/MENKES/SK/II/2009. Jakarta: Kemenkes RI; 2009.

[13] Gunawan, Sutiarso, Suyatno, Setiawan. Dasar-dasar proteksi radiasi. Jakarta: Rineka Cipta; 2016.

Downloads

Published

2025-06-30