Optimization of irradiation direction in x-ray therapy for cervical cancer using phits v 3.341 program

Authors

  • Dhawya Najma Nabilla Ramadhin Universitas Pertahanan RI, Indonesia Author
  • Manmeet Kaur SAGES, farid nagar, bhilai, Chhattisgarh, India Author

DOI:

https://doi.org/10.58524/hzt1d412

Keywords:

Cervical Cancer, Dose Distribution, PHITS V 3.341, Radiation Optimization, X-Ray Therapy

Abstract

Cervical cancer is one of the leading causes of cancer-related deaths among women worldwide. The effectiveness of X-ray therapy is significantly influenced by the direction of radiation used in treatment. This research aims to optimize the direction of X-ray radiation therapy for cervical cancer using the PHITS V 3.341 program. The methods employed in this study include numerical simulations to analyze the dose distribution in cervical tissue. The PHITS V 3.341 program is used to calculate the energy distribution and the dose received by the tissue, considering various radiation parameters. The main assumption in this research is tissue homogeneity and the use of standard radiation parameters. The research findings indicate that optimizing the direction of radiation can enhance treatment effectiveness and reduce side effects. These results are compared with existing clinical data and show good conformity. The main conclusion of this study is that using the PHITS V 3.341 program can aid in planning more effective radiation therapy. Further recommendations include additional research for clinical verification.

References

[1] World Health Organization. Cancer [Internet]. 2024 [cited 2024 Jun 12]. Available from: https://www.who.int/health-topics/cancer#tab=tab_1

[2] World Health Organization. Cancer site ranking. Geneva: WHO; 2022.

[2] Gurram L, Kalra B, Mahantshetty U. Meeting the global need for radiation therapy in cervical cancer - an overview. Semin Radiat Oncol. 2020;30(4):348–54. doi:10.1016/j.semradonc.2020.05.004.

[4] Stavitskii VARV, Yu DONP, AFTAAKA, LLL, AGRR. Dosimetric and mathematical monitoring of the effect of X-ray therapy of cervical cancer. Med Phys. 2009;43.

[5] Skipar K, et al. Risk of recurrence after chemoradiotherapy identified by multimodal MRI and 18F-FDG-PET/CT in locally advanced cervical cancer. Radiother Oncol. 2022;176:17–24. doi:10.1016/j.radonc.2022.09.002..

[6] Sato T, et al. Recent improvements of the Particle and Heavy Ion Transport Code System—PHITS version 3.33. J Nucl Sci Technol. 2024;61(1):127–35. doi:10.1080/00223131.2023.2275736.

[7] Griffin KL, et al. Comparison of out-of-field normal tissue dose estimates for pencil beam scanning proton therapy: MCNP6, PHITS, and TOPAS. Biomed Phys Eng Express. 2022;9:–. doi:10.1088/2057-1976/acaab1.

[8] Sato T, et al. Particle and Heavy Ion Transport code System, PHITS, version 2.52. J Nucl Sci Technol. 2013;50(9):913–23. doi:10.1080/00223131.2013.814553.

[9] Sato T, et al. Overview of Particle and Heavy Ion Transport Code System PHITS. Ann Nucl Energy. 2015;82:110–5. doi:10.1016/j.anucene.2014.08.023.

[10] Takagi H, Sakamoto J, Osaka Y, Shibata T, Fujita S, Sasagawa T. Usefulness of the maximum standardized uptake value for the diagnosis and staging of patients with cervical cancer undergoing PET/CT. Medicine (Baltimore). 2018;97(7):e9856. doi:10.1097/MD.0000000000009856.

[11] Ardana IM, Sardjono Y. Optimization of a neutron beam shaping assembly design for BNCT and its dosimetry simulation based on MCNPX. J Teknol Reaktor Nuklir Tri Dasa Mega. 2017;19(3):121. doi:10.17146/tdm.2017.19.3.3582.

[12] Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer. 2019;120(8):779–90. doi:10.1038/s41416-019-0412-y.

[13] Puspitasari RA, et al. Analisis kualitas berkas radiasi LINAC untuk efektivitas radioterapi. Jurnal Teknologi Reaktor Nuklir. 2020.

[14] Abou-Taleb WM, Hassan MH, El Mallah EA, Kotb SM. MCNP5 evaluation of photoneutron production from the Alexandria University 15 MV Elekta Precise medical LINAC. Appl Radiat Isot. 2018;135:184–91. doi:10.1016/j.apradiso.2018.01.036.

[15] Zhang ZD, et al. Physical design of a 10 MeV electron LINAC for industrial application and material irradiation effect research. JACoW-IPAC2023. 2022. doi:10.18429/JACoW-IPAC2023-TUPL125.

[16] Andrijono LIOP, et al. Panduan Penatalaksanaan Kanker Serviks. Jakarta: Perhimpunan Onkologi Indonesia; 2014.

[17] Harish AF, Warsono, Sardjono Y. Dose analysis of boron neutron capture therapy (BNCT) treatment for lung cancer based on PHITS. ASEAN J Sci Technol Dev. 2020;35(3):187–94. doi:10.29037/ajstd.545.

[18] Kim CH, Clement CH, eds. ICRP Publication 145: Annals of the ICRP. Oxford: ICRP; 2020 [Internet]. Available from: https://www.icrp.org

[19] BATAN. Proteksi dan Keselamatan Radiasi BATAN. Jakarta: BATAN; 2014.

[20] Podgorsak EB. External Photon Beams: Physical Aspects. In: Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: IAEA; 2005.

[21] Mariatul Khiftiyah EH. Analisa kurva percentage depth dose (PDD) dan profile dose untuk lapangan radiasi simetri dan asimetri pada linear accelerator (LINAC) 6 dan 10 MV [Thesis]. Surabaya: Universitas Airlangga; 2014.

[22] BAPETEN. Peraturan Kepala Badan Pengawas Tenaga Nuklir. Jakarta: BAPETEN; 2010.

[23] Cefaro GA, Genovesi D, Perez CA, Valentini V. Delineating Organs at Risk in Radiation Therapy. Milan: Springer-Verlag Italia; 2013. doi:10.1007/978-88-470-5257-4.

[24] Bisello S, et al. Dose–volume constraints for organs at risk in radiotherapy (CORSAIR): An all-in-one multicenter multidisciplinary practical summary. Curr Oncol. 2022;29(10):7021–50. doi:10.3390/curroncol29100552.

[25] Jang H, et al. Effective organs-at-risk dose sparing in volumetric modulated arc therapy using a half-beam technique in whole pelvic irradiation. Front Oncol. 2021;11:611469. doi:10.3389/fonc.2021.611469.

[26] Chang DS, Lasley FD, Das IJ, Mendonca MS, Dynlacht JR. Normal tissue radiation responses. In: Basic Radiotherapy Physics and Biology. Cham: Springer; 2014. p. 265–75. doi:10.1007/978-3-319-06841-1_26.

[27] Emami D. Tolerance of normal tissue to therapeutic radiation. Int J Radiat Oncol Biol Phys. 2013.

[28] Gerhard SG, et al. Organ at risk dose constraints in SABR: A systematic review of active clinical trials. Pract Radiat Oncol. 2021;11(4):e355–65. doi:10.1016/j.prro.2021.03.005.

[29] Kementerian Kesehatan Republik Indonesia. Pedoman Nasional Pelayanan Kedokteran Tata Laksana Kanker Paru (Keputusan Menteri Kesehatan Republik Indonesia No. HK.01.07/MENKES/1438/2023). Jakarta: Kemenkes RI; 2023.

Downloads

Published

2025-06-30