Integrative graph theory and boolean modeling for breast cancer network reconstruction in precision medicine
DOI:
https://doi.org/10.58524/6g58m004Keywords:
Boolean model , Breast cancer , Graph theory , Precision medicine , Protein interaction networkAbstract
Breast cancer comprises complex molecular interactions that can be represented as biological networks. Understanding these networks is essential for identifying regulatory hubs and potential therapeutic targets in precision oncology. This study reconstructed a breast cancer protein–protein interaction (PPI) network using data from STRING-DB, KEGG, and SIGNOR. Graph theory was applied to compute topological metrics—degree, betweenness, and clustering coefficients—to identify key proteins and functional modules, while the Markov Cluster Algorithm (MCL) detected community structures. Boolean modeling simulated network dynamics by binarizing interaction strengths at a confidence threshold of 0.7. The reconstructed network contained 150 nodes and 1,359 edges, exhibiting a scale-free topology (γ = 2.1) and modular organization (global clustering coefficient 0.522). BRCA1 and TP53 emerged as densely connected hubs, whereas EGFR and AKT1 acted as major signaling conduits linking multiple pathways. MCL revealed four primary clusters associated with DNA repair, cell-cycle regulation, growth signaling, and survival pathways. Boolean simulations demonstrated that perturbing these hub proteins significantly altered network states linked to proliferation and apoptosis resistance. Notably, TP53 restoration was predicted to stabilize Basal-like breast cancer networks, while inhibition of AKT1 or EGFR suppressed pro-proliferative attractors. Integrating graph theory with Boolean modeling thus provides a systems-level framework for understanding molecular regulation in breast cancer. The identification of BRCA1, TP53, EGFR, and AKT1 as high-centrality nodes highlights their importance as potential therapeutic targets and supports the advancement of precision medicine approaches tailored to breast cancer network dynamics.
References
[1] Alfarano C, Andrade CE, Anthony K, et al. The Biomolecular Interaction Network Database. Nucleic Acids Res. 2005;33(Database issue):D418–D424. doi:10.1093/nar/gki008.
[2] Alizadeh AA, et al. Toward understanding and exploiting tumor heterogeneity. Nat Rev Cancer. 2022;22(6):399–412. doi:10.1038/s41571-022-00593-8.
[3] American Cancer Society. Breast Cancer. Available from: https://www.cancer.org/cancer/breast-cancer.html.
[4] Bardes EE, et al. Targeting molecular pathways to overcome resistance in breast cancer treatment. Cancer Treat Rev. 2024;106:102396. doi:10.1016/j.ctrv.2023.102396.
[5] Brägelmann J, et al. The role of the tumor microenvironment in breast cancer metastasis: Implications for prevention and treatment. Cancer Lett. 2019;459:264–272. doi:10.1016/j.canlet.2019.02.008.
[6] Bushong SC. Radiologic Science for Technologists. 10th ed. New York: CV Mosby Company; 2017.
[7] Camacho D, et al. Emerging approaches for modulating immunity in breast cancer. Cancer Immunol Immunother. 2023;72(3):751–764. doi:10.1007/s00262-022-03386-6.
[8] Chuang HY, Lee E, Liu YT, et al. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007;3:140. doi:10.1038/msb4100140.
[9] DeSantis CE, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022;72(6):526–541. doi:10.3322/caac.21772.
[10] Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–1584. doi:10.1093/nar/30.7.1575.
[11] Francisco S, et al. Modular architecture of gene expression in breast cancer. Bioinformatics. 2023;39(3):450–455. doi:10.1093/bioinformatics/btab721.
[12] Garofalo A, et al. The impact of lifestyle factors on breast cancer: A review. Breast Cancer Res. 2023;25(1):94–102. doi:10.1186/s13058-023-01660-x.
[13] Gillet JP, et al. The role of genetic and epigenetic events in the development of breast cancer. Adv Exp Med Biol. 2020;1210:77–96. doi:10.1007/978-3-030-39506-5_6.
[14] Hyman DM, et al. Precision medicine in cancer therapy: The future. Nat Rev Clin Oncol. 2020;17(4):191–206. doi:10.1038/s41571-019-0295-z.
[15] Joshi-Tope G, Gillespie M, Vastrik I, et al. Reactome: A knowledgebase of biological pathways. Nucleic Acids Res. 2005;33(Database issue):D428–D432. doi:10.1093/nar/gki007.
[16] Kobyakov A, et al. Deciphering the biochemical rationale of anti-tumor activity of doxorubicin against a critical human pathway. PLoS One. 2024;19(2):e0288120. doi:10.1371/journal.pone.0288120.
[17] Lee J, et al. The role of mutations in PIK3CA and AKT1 in breast cancer. Lancet Oncol. 2019;20(4):e189–e198. doi:10.1016/S1470-2045(18)30276-9.
[18] Li G, Guo X, Chen M, et al. Prevalence and spectrum of AKT1, PIK3CA, PTEN, and TP53 somatic mutations in Chinese breast cancer patients. PLoS One. 2018;13(9):e0203495. doi:10.1371/journal.pone.0203495.
[19] Masuda N, Kojaku S, Sano Y. Clustering coefficients for correlation networks. Phys Rev E. 2018;98:012312. doi:10.1103/PhysRevE.98.012312.
[20] Mukhopadhyay S, et al. Novel therapeutic strategies for breast cancer: A comprehensive review. Breast Cancer Res Treat. 2023;192(3):469–485. doi:10.1007/s10549-023-06954-3.
[21] Navarini T, et al. Targeting orchestrated changes in astrocytes for the treatment of brain cancers. Mol Cell. 2021;81(7):1390–1402. doi:10.1016/j.molcel.2021.02.008.
[22] Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60(2):29–37. doi:10.2967/jnumed.118.220590.
[23] O’Reilly E, et al. Current perspectives on AI in breast imaging: A review. Radiology. 2024;300(1):86–92. doi:10.1148/radiol.20242406.
[24] Papadopoulos N, et al. A comprehensive look at cancer genomics. Oncology. 2017;31(2):127–129.
[25] Reitz M, et al. Biomarker discovery in breast cancer: Breaking the barrier of heterogeneity. Clin Cancer Res. 2024;30(6):1378–1386. doi:10.1158/1078-0432.CCR-23-2533.
[26] Ryu S, Im J, Won J. Targeting breast cancer promoter paraffin genes in Korean patients. J Cancer Res Treat. 2023;55(1):60–67. doi:10.4143/crt.2022.606.
[27] Saadatpour A, Albert R. Boolean modeling of biological regulatory networks: A methodology tutorial. Methods. 2013;62(1):3–12. doi:10.1016/j.ymeth.2012.10.012.
[28] Sender R, Fuchs E, Milo R. Are we missing the promoter in cancer? Nat Rev Cancer. 2016;16(12):882–887. doi:10.1038/nrc.2016.135.
[29] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein–protein association networks with increased coverage. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131.
[30] Tomasetti C, et al. Cancer prevention: A general approach to risk assessment. Science. 2017;355(6328):206–211. doi:10.1126/science.aaf4556.
[31] Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–1558. doi:10.1126/science.1235122.
[32] You S, et al. ML/AI-based approaches in cancer immunotherapy: Challenges and opportunities. J Immunother Cancer. 2024;12(1):3052. doi:10.1136/jitc-2023-005305.
[33] Zhang Y, et al. Predicting pan-cancer genomics: Applications and prospects. Nat Genet. 2023;55(2):138–148. doi:10.1038/s41588-022-01105-9.
[34] Juneja V, et al. The role of the tumor microenvironment in the development of immune evasion. Nat Rev Immunol. 2024;24(1):1–17. doi:10.1038/s41577-023-00783-8.
[35] Nensa F, et al. Advanced imaging techniques in cancer diagnostics: A comprehensive review. OncoTargets Ther. 2023;16:151–167. doi:10.2147/OTT.S413246.
[36] Krishnan V, et al. The effect of obesity on the development and progression of breast cancer. Nat Rev Dis Primers. 2024;10(1):1–14. doi:10.1038/s41572-024-00260-y.
[37] Bohr A, et al. Rethinking cancer treatment: Evolution of strategies targeting the tumor microenvironment. Front Oncol. 2023;13:65827. doi:10.3389/fonc.2023.65827.
[38] Fishel ML, et al. Integrating genetic and environmental risk factors in breast cancer: A syndromic approach. Genomics. 2024;116(1):12–23. doi:10.1016/j.ygeno.2023.07.008.
[39] Hwang J, et al. Recent advances in breast cancer genomics: A clinical perspective. Clin Genet. 2023;113(2):173–182. doi:10.1111/cge.14030.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Chrisdiego Chrisanto, Djoko Heksa Purnomo (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
