Lead aprons vs polymer composites in radiation protection: A comparative study
DOI:
https://doi.org/10.58524/jdzdac96Keywords:
Effectiveness, Lead, Medical Personnel, Polymer Composites, Radiation ProtectionAbstract
Ionizing radiation exposure poses a significant risk to healthcare personnel. Traditional lead-based protective aprons, while effective, present limitations in terms of weight and flexibility. This study evaluates polymer composite–based radiation protection aprons as potential alternatives through comparative analysis of experimental data, simulations, and literature findings. Radiation shielding performance was assessed using mass attenuation coefficient (MAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). Results revealed that recycled high-density polyethylene (r-HDPE) composites reinforced with 45 wt% ilmenite achieved an HVL of 2.611 cm at 1.332 MeV, while polyvinyl chloride (PVC) nanocomposites containing 6 wt% bismuth vanadate (BiVO₄) exhibited superior attenuation with an HVL of 1.29 cm at 0.081 MeV and 6.459 cm at 1.408 MeV. The MAC of PVC + 6 wt% BiVO₄ ranged from 0.3275 to 0.0572 cm²/g, outperforming both HDPE-Ilm and PbO-based aprons. Compared to conventional lead aprons with 0.5 mm Pb equivalence and 57.5% attenuation, polymer composites provided comparable or higher shielding efficiency with significant weight reduction and improved flexibility. These findings suggest that PVC + 6 wt% BiVO₄ nanocomposites represent a promising alternative to lead for next-generation lightweight and ergonomic radiation protection aprons in medical applications.
References
[1] Aryawijayanti S, Susilo, Sutikno. Analisis dampak radiasi sinar-X pada mencit melalui pemetaan dosis radiasi di laboratorium fisika medik. Jurnal MIPA. 2015;38(1):25–30.
[2] Bandunggawa P, Sandi I, Merta I. Bahaya radiasi dan cara proteksinya. Medicina (B. Aires). 2009;40:47–51.
[3] Ayu MSK. Proteksi radiasi pada pasien, pekerja, dan lingkungan di dalam instalasi radiologi. Anatomi Klinis Dasar. 2018;236–239.
[4] International Commission on Radiological Protection (ICRP). ICRP Publication 146: Radiological protection of people and the environment in the event of a large nuclear accident. Ann ICRP. 2020;49(4).
[5] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources, Effects and Risks of Ionizing Radiation. New York: United Nations; 2022.
[6] International Atomic Energy Agency (IAEA). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. Vienna: IAEA; 2014.
[7] Damayanti O. Hasil uji kebocoran alat pelindung diri di instalasi radiologi rumah sakit umum Karawang. J Teras Kesehatan. 2021;4(1):22–28.
[8] Maslebu G, Muninggar J, Hapsara SA. Estimasi risiko radiasi janin pada pemeriksaan radiografi pelvis. Jurnal Fisika. 2017;4(2):40–47.
[9] He X, Zhao R, Rong L, Yao K, Chen S, Wei B. Answers to if the Lead Aprons are Really Helpful in Nuclear Medicine from the Perspective of Spectroscopy. Radiat Prot Dosimetry. 2017;174(4):558–564.
[10] Kartikasari Y, Alif M, Fathoni N, Indrati R. Uji fungsi alat pelindung radiasi (lead apron) di instalasi radiologi rumah sakit. Publication Ethics. 2021;25(2).
[11] Marlina R, Engberg AR, Eriksson O, Dalgliesh RM. Understanding neutron absorption and scattering in polymer composite materials. Nucl Instrum Methods Phys Res A. 2020;984:164613.
[12] Abidin Z, Alkrytania D, Indrajati IN, Besar Kulit B, Plastik Yogyakarta K, Yogyakarta S. Analisis bahan apron sintetis dengan filler timbal (II) oksida sesuai SNI untuk proteksi radiasi sinar-X. J Forum Nuklir. 2015;9(2).
[13] Rahmawati I, Jumpeno BYEB, Mellawati J, Ramlan R. Analisis pengaruh densitas terhadap potensi komposit apron proteksi radiasi sinar-X dengan bahan kaktus centong dan timbal (II) asetat. Publication Ethics. 2023;25(2).
[14] Akman, F, Ogul H, Kaçal MR, Polat H, Dilsiz K, Agar O. Eco/Friendly Polymer-Based Composites for Nuclear Shielding Applications. In: Ikhmayies, S.J. (eds) Advanced Composites. Advances in Material Research and Technology. Springer, Cham. 2024.
[15] Jayakumar S, Saravanan T, Philip J. A review on polymer nanocomposites as lead-free materials for diagnostic X-ray shielding: Recent advances, challenges and future perspectives. Hybrid Advances. 2023;4:100100.
[16] Kavaz, E., Ekinci, N. Energy Absorption and Exposure Buildup Factors in Polymers by Nuclear Track Detectors. ajc 2016, 28, 1673-1681.
[17] Kharita MH, Takeyeddin M, Alnassar M, Yousef S. Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. Prog Nucl Energy. 2008;50(1):33–36.
[18] Abdel Maksoud MIA, Kassem SM, Ashour AH, Awed AS. Recycled high-density polyethylene reinforced with ilmenite as a sustainable radiation shielding material. RSC Adv. 2023;13(30):20698–20708.
[19] Kassem SM, Abdel Maksoud MIA, El Sayed AM, Ebraheem S, Helal AI, Ebaid YY. Optical and radiation shielding properties of PVC/BiVO₄ nanocomposites. Sci Rep. 2023;13(1):1–19.
[20] Fionov A, Kraev I, Yurkov G, Solodilov V, Zhukov A, Surgay A, et al. Radio-absorbing polymer composites and their applications in electromagnetic compatibility. Polymers. 2022;14(15).
[21] Marlina R. Analisis kepatuhan penggunaan alat pelindung diri (APD) dalam pelaksanaan cegah tangkal penyakit COVID-19 di pintu negara pada negara pada petugas kesehatan kantor pelayanan pelabuhan kelas 1 Makassar. Universitas Hasanuddin; 2020.
[22] Chang L, Zhang Y, Liu Y, Fang J, Luan W, Yang X, Zhang W. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015; 356-357: 88-93.
[23] Almuqrin, AH, Elsafi M, Yasmin S, Sayyed MI. Morphological and Gamma-Ray Attenuation Properties of High-Density Polyethylene Containing Bismuth Oxide. Materials 2022;15, 6410.
[24] Elsafi M, Hedaya AM, Abdel-Gawad EH. et al. Experimental Investigation of the Radiation Shielding Performance of a Newly Developed Silicon-Epoxy Resin Doped with WO3 Micro/Nanoparticles. Silicon. 2024;16, 5439–5446.
[25] Bayoumi EE, Attia NF, Elshehy EA, Abd El-Magied MO, Atia BM, Galhoum AA, Manjunatha HC, Sridhar KN, Khalil LH, Mohamed AA. Tungsten-based hybrid nanocomposite thin film coated fabric for gamma, neutron, and X-ray attenuation. Surfaces and Interfaces. 2023; 39:102883.
[26] Nayak NG, Vijaya MG, Siddappa K. Effective atomic numbers of some polymers and other materials for photoelectric process at 59.54keV. Radiation Physics and Chemistry. 2001;61(3-6): 559-561.
[27] More CV, Alsayed Z, Badawi MS, et al. Polymeric composite materials for radiation shielding: a review. Environ Chem Lett. 2021:19: 2057–2090.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vonna Lestari Dian Subianty, Sovian Aritonang, Mikael Syväjärvi (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
