Unveiling regional drivers of the blue economy in Sumatra: A multiscale space–time regression analysis with variable selection
DOI:
https://doi.org/10.58524/jgsa.v1i2.31Keywords:
Blue Economy, Kernel Function, Multiscale Geographically and Temporally Weighted Regression, Spatio-TemporalAbstract
Indonesia, as a maritime country, positions the blue economy as a cornerstone in the 2025–2045 National Long-Term Development Plan (RPJPN) to support sustainable economic growth, particularly through the development of the fisheries sector and marine tourism. This study aims to construct a Blue Economy Index (BEI) at the district/city level and identify its key determinants using the Regression Weighted Geographic and Temporal Multiscale (MGTWR) method. The BEI is based on environmental, social, and economic dimensions using data from 2020 to 2022 across 154 districts/cities on Sumatra Island. The analysis incorporates 14 predictor variables grouped into four dimensions and selected through Group LASSO and Elastic Net methods. The best-performing model is the RTGTM with Group LASSO variable selection and a Gaussian kernel function, yielding an of 30.71% and an AIC of 1377.52. The social dimension contributes most to the BEI, while Medan City and Subulussalam City consistently record the highest and lowest scores. Significant variables influencing BEI include population factors (number of sub-districts, total population, sex ratio), education factors (number of senior high schools and vocational schools), and environmental indicators (protected drinking water sources and sanitation access). These findings underscore the importance of multi-dimensional, spatial, and temporal approaches in evaluating and advancing blue economy policies at the regional level.
Downloads
References
Aghnyn, M., Rachmawati, R. N., Abdurrazzaq, A., Brahme, N., Dixit, A., & Hadap, A. (2024). Mapping Blue Economy Potential Using Spatial Statistical Downscaling Model: Analysis of the Impact of Climate Change on Freshwater Fish Resources. International Journal of Hydrological and Environmental for Sustainability, 3(1), 57–64. https://doi.org/10.58524/ijhes.v3i1.440
Aheto, J. M. K., Duah, H. O., Agbadi, P., & Nakua, E. K. (2021). A predictive model, and predictors of under-five child malaria prevalence in Ghana: How do LASSO, Ridge and Elastic net regression approaches compare? Preventive Medicine Reports, 23. https://doi.org/10.1016/j.pmedr.2021.101475
Al-Hasani, G., Asaduzzaman, M., & Soliman, A.-H. (2021). Geographically weighted Poisson regression models with different kernels: Application to road traffic accident data. Communications in Statistics: Case Studies, Data Analysis and Applications, 7(2), 166–181. https://doi.org/10.1080/23737484.2020.1869628
Altelbany, S. (2021). Evaluation of Ridge, Elastic Net and Lasso Regression Methods in Precedence of Multicollinearity Problem: A Simulation Study. Journal of Applied Economics and Business Studies, 5(1). https://doi.org/10.34260/jaebs.517
Araveeporn, A. (2021). The Higher-Order of Adaptive Lasso and Elastic Net Methods for Classification on High Dimensional Data. Mathematics, 9(10), 1091. https://doi.org/10.3390/math9101091
Bastiaan, R. M., Salaki, D. T., & Hatidja, D. (2022). Comparing the Performance of Prediction Model of Ridge and Elastic Net in Correlated Dataset. Operations Research: International Conference Series, 3(1). https://doi.org/10.47194/orics.v3i1.127
Budi Syahputra Siregar, R., Rohani, L., & Devianty, R. (2023). Analisis Penggunaan Media Sosial Instagram terhadap Komunikasi Pembangunan di Kota Medan. SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 2(3). https://doi.org/10.54443/sibatik.v2i3.720
Cellmer, R., Cichulska, A., & Bełej, M. (2020). Spatial analysis of housing prices and market activity with the geographically weighted regression. ISPRS International Journal of Geo-Information, 9(6). https://doi.org/10.3390/ijgi9060380
Chan, J. Y. Le, Leow, S. M. H., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z. W., & Chen, Y. L. (2022). Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. In Mathematics (Vol. 10, Issue 8). https://doi.org/10.3390/math10081283
Christina, A., Rachmawati, R., & Pusponegoro, N. H. (2025). Climate impact on blue economy index: Bayesian spatio-temporal regression with statistical downscaling in Sumatera. Journal of Geospatial Science and Analytics, 1(1), 13–34.
Emmert-Streib, F., & Dehmer, M. (2019). High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection. Machine Learning and Knowledge Extraction, 1(1), 359–383. https://doi.org/10.3390/make1010021
Gollamandala, V. S., & Kampa, L. (2021). An additive sparse logistic regularization method for cancer classification in microarray data. International Arab Journal of Information Technology, 18(2). https://doi.org/10.34028/IAJIT/18/2/10
Henderi, H. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. IJIIS: International Journal of Informatics and Information Systems, 4(1). https://doi.org/10.47738/ijiis.v4i1.73
Huang, Y., Tibbe, T., Tang, A., & Montoya, A. (2024). Lasso and Group Lasso with Categorical Predictors: Impact of Coding Strategy on Variable Selection and Prediction. Journal of Behavioral Data Science, 3(2). https://doi.org/10.35566/jbds/v3n2/montoya
Ilori, O. O., & Tanimowo, F. O. (2022). Heteroscedasticity Detection in Cross-Sectional Diabetes Pedigree Function: A Comparison of Breusch-Pagan-Godfrey, Harvey and Glejser Tests. International Journal of Scientific and Management Research, 05(12). https://doi.org/10.37502/ijsmr.2022.51211
Jo, H., & Kim, H. (2022). Analyzing Electricity Consumption Factors of Buildings in Seoul, Korea Using Multiscale Geographically Weighted Regression. Buildings, 12(5). https://doi.org/10.3390/buildings12050678
Kementerian PPN, B. (2023). Indonesia Blue Economy Roadmap (Issue 2). BAPPENAS.
Khattak, M. A., Ali, M., & Rizvi, S. A. R. (2021). Predicting the European stock market during COVID-19: A machine learning approach. MethodsX, 8. https://doi.org/10.1016/j.mex.2020.101198
Laheng, S., Putri, D. U., Darmawati, D., Putri, I. W., Adli, A., & Aliyas, A. (2022). Penyuluhan Potensi Komoditas Perikanan Kabupaten Tolitoli Dalam Menumbuhkan Jiwa Kewirausahaan Siswa SMA Negeri 2 Tolitoli. Jurnal Cendekia Mengabdi Berinovasi Dan Berkarya, 1(1). https://doi.org/10.56630/jenaka.v1i1.223
Li, Y., Sun, C., Li, P., Zhao, Y., Mensah, G. K., Xu, Y., Guo, H., & Chen, J. (2020). Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on Functional fMRI Dataset. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00060
Liu, F., Yao, J., Liu, C., & Shou, S. (2023). Construction and validation of machine learning models for sepsis prediction in patients with acute pancreatitis. BMC Surgery, 23(1). https://doi.org/10.1186/s12893-023-02151-y
Liu, N., Zou, B., Li, S., Zhang, H., & Qin, K. (2021). Prediction of PM2.5 concentrations at unsampled points using multiscale geographically and temporally weighted regression. Environmental Pollution, 284, 117116. https://doi.org/10.1016/j.envpol.2021.117116
Liu, Y., & Dong, F. (2021). Using geographically temporally weighted regression to assess the contribution of corruption governance to global PM2.5. Environmental Science and Pollution Research, 28(11). https://doi.org/10.1007/s11356-020-11559-5
Martínez-Vázquez, R. M., Milán-García, J., & de Pablo Valenciano, J. (2021). Challenges of the Blue Economy: evidence and research trends. Environmental Sciences Europe, 33(1). https://doi.org/10.1186/s12302-021-00502-1
Oghenekevwe Etaga, H., Chibotu Ndubisi, R., & Lilian Oluebube, N. (2021). Effect of Multicollinearity on Variable Selection in Multiple Regression. Science Journal of Applied Mathematics and Statistics, 9(6). https://doi.org/10.11648/j.sjams.20210906.12
Okafor-Yarwood, I., Kadagi, N. I., Miranda, N. A. F., Uku, J., Elegbede, I. O., & Adewumi, I. J. (2020). The blue economy-cultural livelihood-ecosystem conservation triangle: The African experience. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00586
Ou, B., Zhao, X., & Wang, M. (2017). Power of Moran’s I Test for Spatial Dependence in Panel Data Models with Time Varying Spatial Weights Matrices. Journal of Systems Science and Information, 3(5). https://doi.org/10.1515/jssi-2015-0463
Oyedele, O. (2023). Determining the optimal number of folds to use in a K-fold cross-validation: A neural network classification experiment. Research in Mathematics, 10(1). https://doi.org/10.1080/27684830.2023.2201015
Phang, S., March, A., Touron-Gardic, G., Deane, K., & Failler, P. (2023). A review of the blue economy, potential, and opportunities in seven Caribbean nations pre-COVID-19. ICES Journal of Marine Science, 80(8), 2233–2243. https://doi.org/10.1093/icesjms/fsac230
Podbregar, I., Šimić, G., Radovanović, M., Filipović, S., Maletič, D., & Šprajc, P. (2020). The international energy security risk index in sustainable energy and economy transition decision making—A reliability analysis. Energies, 13(14). https://doi.org/10.3390/en13143691
Popoola, O. O., & Olajuyigbe, A. E. (2023). Operationalizing the blue economy in the Gulf of Guinea, Africa. In Frontiers in Political Science (Vol. 5). https://doi.org/10.3389/fpos.2023.1070508
Rai, A., Ahmad, Z., Hasan, M. J., & Kim, J. M. (2021). A novel pipeline leak detection technique based on acoustic emission features and two-sample kolmogorov–smirnov test. Sensors, 21(24). https://doi.org/10.3390/s21248247
Ren, Y., Tang, G., Li, X., & Chen, X. (2023). A Study of Multifactor Quantitative Stock-Selection Strategies Incorporating Knockoff and Elastic Net-Logistic Regression. Mathematics, 11(16). https://doi.org/10.3390/math11163502
Safnul, D., Kamello, T., Purba, H., & Ikhsan, E. (2020). Civil Liability of Construction Service Providers Against Building Failures in the Taxiway Construction Agreement of Kuala Namu International Airport. IOP Conference Series: Earth and Environmental Science, 452(1), 012080. https://doi.org/10.1088/1755-1315/452/1/012080
Schutter, M. S., Hicks, C. C., Phelps, J., & Waterton, C. (2021). The blue economy as a boundary object for hegemony across scales. Marine Policy, 132. https://doi.org/10.1016/j.marpol.2021.104673
Shao, Y., & Qin, C. (2024). Strategies for constructing mathematical models of nonlinear systems based on multiple linear regression models. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns.2023.1.00078
Shin, K., You, S., & Kim, M. (2021). A comparison of two-stage least squares (Tsls) and ordinary least squares (ols) in estimating the structural relationship between after-school exercise and academic performance. Mathematics, 9(23). https://doi.org/10.3390/math9233105
Sifriyani, S., Rasjid, M., Rosadi, D., Anwar, S., Wahyuni, R. D., & Jalaluddin, S. (2022). Spatial-Temporal Epidemiology of COVID-19 Using a Geographically and Temporally Weighted Regression Model. Symmetry, 14(4), 742. https://doi.org/10.3390/sym14040742
Sloboda, B. W., Pearson, D., & Etherton, M. (2023). An application of the LASSO and elastic net regression to assess poverty and economic freedom on ECOWAS countries. Mathematical Biosciences and Engineering, 20(7). https://doi.org/10.3934/mbe.2023541
Sohilauw, F. S., Selanno, D. A. J., & Lopulalan, Y. (2019). Integrasi Jender dalam Penguatan Sosial dan Ekonomi Keluarga Nelayan Pancing Tonda (Studi Kasus di Negeri Ureng dan Negeri Assilulu Kecamatan Leihitu Kabupaten Maluku Tengah). TRITON : Jurnal Manajemen Sumberdaya Perairan, 15(1). https://doi.org/10.30598/tritonvol15issue1page1-13
Takano, Y., & Miyashiro, R. (2020). Best subset selection via cross-validation criterion. TOP, 28(2), 475–488. https://doi.org/10.1007/s11750-020-00538-1
Tatang Syahban Adi Syahputra, Purba, E., & Damanik, D. (2021). Pengaruh Infrastruktur Terhadap Pertumbuhan Ekonomi Di Kota Subulussalam. Jurnal Ekuilnomi, 3(2). https://doi.org/10.36985/ekuilnomi.v3i2.261
Tay, J. K., Narasimhan, B., & Hastie, T. (2023). Elastic Net Regularization Paths for All Generalized Linear Models. Journal of Statistical Software, 106. https://doi.org/10.18637/jss.v106.i01
Wang, D., Chai, Z., Yang, Y., Qiu, A., Kang, X., & Han, J. (2020). A cuda-based parallel geographically weighted regression for large-scale geographic data. ISPRS International Journal of Geo-Information, 9(11). https://doi.org/10.3390/ijgi9110653
Wu, C., Ren, F., Hu, W., & Du, Q. (2019). Multiscale geographically and temporally weighted regression: exploring the spatiotemporal determinants of housing prices. International Journal of Geographical Information Science, 33(3), 489–511. https://doi.org/10.1080/13658816.2018.1545158
Wuwung, L., Croft, F., Benzaken, D., Azmi, K., Goodman, C., Rambourg, C., & Voyer, M. (2022). Global blue economy governance – A methodological approach to investigating blue economy implementation. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1043881
Zhang, X., Huang, B., & Zhu, S. (2019). Spatiotemporal influence of urban environment on taxi ridership using geographically and temporally weighted regression. ISPRS International Journal of Geo-Information, 8(1). https://doi.org/10.3390/ijgi8010023
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Yusuf Al Habsy, Muhamad Syazali (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

