Spatio-temporal modeling of built-up land expansion (2005–2055) in the eruption prone area of Gamalama volcano, Ternate island, Indonesia
DOI:
https://doi.org/10.58524/jgsa.v1i3.40Keywords:
Built-Up Land, CA MC , Gamalama, TernateAbstract
Ternate Island, a volcanic island dominated by the still-active Gamalama Volcano in North Maluku Province, Indonesia, faces complex dynamics in built-up area development driven by accelerated demographic growth and economic activities, particularly in the trade and tourism sectors. The limited availability of flat land has resulted in increasingly intensive expansion of settlements and infrastructure on the volcanic slopes, areas inherently characterized by high volcanic hazard vulnerability. This study employs a Cellular Automata-Markov Chain modeling approach based on multi-temporal satellite imagery and driving variables, including elevation, slope, distance to road networks, and economic center locations, to analyze land cover change dynamics during the periods 2005, 2015, and 2025 and to model projections for 2035, 2045, and 2055. The results demonstrate significant expansion of built-up land from 2005 to 2055. The rate and spatial distribution of built-up land development within disaster-prone zones Prone Zones I and II underscore the urgency of implementing risk-based spatial planning policies, including stringent restrictions on development in hazardous areas, the development of adequate evacuation infrastructure, and the enhancement of community preparedness capacity. The contributions of this research are highly relevant to sustainable regional planning in tropical volcanic areas with high disaster risk, while also emphasizing the importance of integrating disaster mitigation strategies and climate change adaptation into the spatial planning policies of Ternate Island.
Downloads
References
Abdelsamie , E. A., Mustafa, A. A., El-Sorogy, A. S., Maswada, H. F., Almadani, S. A., Shokr, M. S., El-Desoky, A. I., & Meroño de Larriva, J. E. (2024). Current and potential land use/land cover (lulc) scenarios in dry lands using a ca-markov simulation model and the classification and regression tree (cart) method: A cloud-based google earth engine (GEE) approach. Sustainability, 16(24), 11130. https://doi.org/10.3390/su162411130
Achmadi, P. N., Dimyati, M., Manesa, M. D. M., & Rakuasa, H. (2023). Model perubahan tutupan lahan berbasis CA-Markov: Studi kasus kecamatan Ternate Utara, kota Ternate. Jurnal Tanah Dan Sumberdaya Lahan, 10(2), 451–460. https://doi.org/10.21776/ub.jtsl.2023.010.2.28
Al-Shaar, W., Adjizian Gérard, J., Nehme, N., Lakiss, H., & Buccianti Barakat, L. (2021). Application of modified cellular automata Markov chain model: forecasting land use pattern in Lebanon. Modeling Earth Systems and Environment, 7(2), 1321–1335. https://doi.org/10.1007/s40808-020-00971-y
Bachri, S., Shrestha, R. P., Sumarmi, Irawan, L. Y., Masruroh, H., Prastiwi, M. R. H., Billah, E. N., Putri, N. R. C., Hakiki, A. R. R., & Hidiyah, T. M. (2024). Land use change simulation model using a land change modeler in anticipation of the impact of the Semeru volcano eruption disaster in Indonesia. Environmental Challenges, 14, 100862. https://doi.org/10.1016/j.envc.2024.100862
Badan Standarisasi Nasional. (2010). SNI 7645-2010 tentang Klasifikasi Penutup Lahan.
Bastos Moroz, C., & Thieken, A. H. (2024). Urban growth and spatial segregation increase disaster risk: Lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil. Natural Hazards and Earth System Sciences, 24(9), 3299–3314. https://doi.org/10.5194/nhess-24-3299-2024
BMKG. (2019). Katalog Tsunami Indonesia Tahun 416-2018 per wilayah. Badan Meteorologi dan Geofisika.
BPS. (2024). Kota Ternate Dalam Angka Tahun 2023 (BPS Kota Ternate (ed.)). BPS Kota Ternate.
Cardwell, R., McDonald, G., Wotherspoon, L., & Lindsay, J. (2021). Simulation of post volcanic eruption land use and economic recovery pathways over a period of 20 years in the Auckland region of New Zealand. Journal of Volcanology and Geothermal Research, 415, 107253. https://doi.org/10.1016/j.jvolgeores.2021.107253
Ervita, K., Marfai, M. A., Khakhim, N., & Mei, E. T. W. (2019). Tsunami susceptibility mapping in the coastal area of Ternate Island. In T. D. Pham, K. D. Kanniah, K. Arai, G. J. P. Perez, Y. Setiawan, L. B. Prasetyo, & Y. Murayama (Eds.), Sixth International Symposium on LAPAN-IPB Satellite (p. 107). SPIE. https://doi.org/10.1117/12.2541843
Espitia, H., Soriano, J., Machón, I., & López, H. (2021). Compact fuzzy systems based on boolean relations. Applied Sciences (Vol. 11, Issue 4). https://doi.org/10.3390/app11041793
Fachruddin, F., Sanusi, S., Yusra, A., Suhendra, R., Usman, M., & Safriani, M. (2025). Modeling of cellular automata Marcov chain for land use change prediction in Nagan Raya regency. International Journal of Geoinformatics, 143–154. https://doi.org/10.4028/p-IZt6M5
Fitri, N. I., Damayanti, A., Indra, T. L. L., & Dimyati, M. (2021). Cellular automata and Markov chain spatial modeling for residential area carrying capacity in Samarinda City, East Kalimantan province. IOP Conference Series: Earth and Environmental Science, 673(1), 12051. https://doi.org/10.1088/1755-1315/673/1/012051
Gandharum, L., Hartono, D. M., Karsidi, A., Ahmad, M., Prihanto, Y., Mulyono, S., Sadmono, H., Sanjaya, H., Sumargana, L., & Alhasanah, F. (2024). Past and future land use change dynamics: assessing the impact of urban development on agricultural land in the Pantura Jabar region, Indonesia. Environmental Monitoring and Assessment, 196(7), 645. https://doi.org/10.1007/s10661-024-12819-4
Gharaibeh, A., Shaamala, A., Obeidat, R., & Al-Kofahi, S. (2020). Improving land-use change modeling by integrating ANN with cellular automata-Markov Chain model. Heliyon, 6(9), e05092. https://doi.org/10.1016/j.heliyon.2020.e05092
Ham, C. M. (2024). Reflecting on the 1775 Mount Gamalama eruption: Lessons from indigenous knowledge for sustainable development in Ternate island, North Maluku province, Indonesia. Journal of Human Ecology and Sustainability, 2(3), 2. https://doi.org/10.56237/jhes24ichspd01
Handayani, W., Mutaqin, B. W., Marfai, M. A., Tyas, D. W., Alwi, M., Rosaji, F. S. C., Hilmansyah, A. A., Musthofa, A., & Fahmi, M. S. I. (2022). Coastal hazard modeling in Indonesia small island: Case study of Ternate island. IOP Conference Series: Earth and Environmental Science, 1039(1), 012025. https://doi.org/10.1088/1755-1315/1039/1/012025
Heinrich Rakuasa. (2025). Classification of Sentinel-2A satellite image for Ternate city land cover using random forest classification in SAGA GIS Software. DNS – Digital Nexus Systematic Journal, 1(1), 34–36. http://dx.doi.org/10.26753/dns.v1i1.1554
Hidayat, A., Marfai, M. A., & Hadmoko, D. S. (2022). The 2015 eruption of Gamalama volcano (Ternate Island–Indonesia): precursor, crisis management, and community response. GeoJournal, 87(1), 1–20. https://doi.org/10.1007/s10708-020-10237-w
Jafarpour Ghalehteimouri, K., Shamsoddini, A., Mousavi, M. N., Binti Che Ros, F., & Khedmatzadeh, A. (2022). Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environmental Challenges, 6, 100399. https://doi.org/10.1016/j.envc.2021.100399
Kamarajugedda, S. A., Johnson, J. A., McDonald, R., & Hamel, P. (2023). Carbon storage and sequestration in Southeast Asian urban clusters under future land cover change scenarios (2015–2050). Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1105759
Kura, A. L., & Beyene, D. L. (2020). Cellular automata Markov chain model based deforestation modelling in the pastoral and agro-pastoral areas of southern Ethiopia. Remote Sensing Applications: Society and Environment, 18, 100321. https://doi.org/10.1016/j.rsase.2020.100321
Kusrini, Worosuprojo, S., Kurniawan, A., & Hizbaron, D. R. (2023). Land use changes of Ternate island 2017-2022. E3S Web of Conferences, 468, 10005. https://doi.org/10.1051/e3sconf/202346810005
Latue, P. C., & Rakuasa, H. (2024). Land cover change analysis of Ternate Selatan sub-district, Ternate city in 2014 and 2024. International Journal of Selvicoltura Asean, 1(1), 17–22. https://journal.ypidathu.or.id/index.php/selvicoltura/article/view/861
Lessy, M. R., Lassa, J., & Zander, K. K. (2024). Understanding multi-hazard interactions and impacts on small-island communities: Insights from the Active Volcano Island of Ternate, Indonesia. Sustainability, 16(16), 6894. https://doi.org/10.3390/su16166894
Ma’muri, Santoso, I., Sudiro, A., & Maryanto, S. (2025). Assessing vulnerability in the face of multiple hazards: Insights from a literature review on Indonesia’s disaster risk management. IOP Conference Series: Earth and Environmental Science, 1486(1), 12041. https://doi.org/10.1088/1755-1315/1486/1/012041
Mao, F., Li, X., Zhou, G., Huang, Z., Xu, Y., Chen, Q., Yan, M., Sun, J., Xu, C., & Du, H. (2023). Land use and cover in subtropical East Asia and Southeast Asia from 1700 to 2018. Global and Planetary Change, 226, 104157. https://doi.org/10.1016/j.gloplacha.2023.104157
Marasabessy, F. (2016). Hirarki wilayah kota Ternate Pasca pengembangan kawasan waterfront city. Jurnal Wilayah Dan Lingkungan, 4(3), 213. https://doi.org/10.14710/jwl.4.3.213-224
Mirzakhani, A., Behzadfar, M., & Azizi Habashi, S. (2025). Simulating urban expansion dynamics in Tehran through satellite imagery and cellular automata Markov chain modelling. Modeling Earth Systems and Environment, 11(2), 145. https://doi.org/10.1007/s40808-025-02325-y
Philia Christi Latue, & Heinrich Rakuasa. (2023). Spatial dynamics of land cover change in Wae Batu Gantung watershed, Ambon city, Indonesia. International Journal of Scientific Multidisciplinary Research, 1(3), 117–130. https://doi.org/10.55927/ijsmr.v1i3.3623
Pradiptasari, A. G., Waani, J. O., & Mononimbar, W. (2015). Sistem penanggulangan bencana gunung api Gamalama di permukiman kampung Tubo Kota Ternate. Spasial, 2(3), 33–42. https://doi.org/10.35793/sp.v2i3.9828
Rakuasa, H., & Pakniany, Y. (2022). Spatial dynamics of land cover change in Ternate Tengah district, Ternate city, Indonesia. Forum Geografi, 36(2), 126–135. https://doi.org/DOI: 10.23917/forgeo.v36i2.19978
Rakuasa, H. (2025). Spatial analysis of built-up land development in 2019 and 2024 based on slope level in Ternate City Indonesia. Proceeding of Geo Tourism International Conference, 1–8.
Rakuasa, H., & Khromykh, V. V. (2025). Simulation of urban growth in Ternate island using cellular automata Markov chains models. Asian Journal of Environmental Research, 2(1), 101–114. https://doi.org/10.69930/ajer.v2i1.310
Sadono, R., Hartono, H., Machfoedz, M. M., & Setiaji, S. (2017). Monitoring land cover changes in the disaster-prone area: A case study of Cangkringan sub-district, the flanks of mount Merapi, Indonesia. Forum Geografi, 31(2), 209–219. https://doi.org/10.23917/forgeo.v31i2.5324
Salakory, M., Rakuasa, H. (2022). Modeling of cellular automata Markov chain for predicting the carrying capacity of Ambon city. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (JPSL), 12(2), 372–387. https://doi.org/https://doi.org/10.29244/jpsl.12.2.372-387
Sihasale, D. A., Latue, P. C., & Rakuasa, H. (2023). Spatial analysis of built-up land suitability in Ternate Island. Jurnal Riset Multidisiplin Dan Inovasi Teknologi, 1(02), 70–83. https://doi.org/10.59653/jimat.v1i02.219
Somae, G., Supriatna, S., Rakuasa, H., & Lubis, A. R. (2023). Pemodelan spasial perubahan tutupan lahan dan prediksi tutupan lahan kecamatan Teluk Ambon Baguala menggunakan CA-Markov. Jurnal Sains Informasi Geografi (J SIG), 6(1), 10–19. http://dx.doi.org/10.31314/jsig.v6i1.1832
Supriatna, S., Mukhtar, M. K., Wardani, K. K., Hashilah, F., & Manessa, M. D. M. (2022). CA-Markov chain model-based predictions of land cover: A case study of Banjarmasin city. Indonesian Journal of Geography, 54(3). https://doi.org/10.22146/ijg.71721
Tyas Wulan Mei, E., Meilyana Sari, I., Fajarwati, A., & Safitri, D. (2017). Assessing the social economic and physical vulnerabilities to Gamalama volcano. Proceedings of the Lst International Cohference on Geography and Education (ICGE 2016). https://doi.org/10.2991/icge-16.2017.7
Ubink, J., & Pickering, J. (2024). The mine, the community, and the chief–mining governance and community representation in conditions of legal pluralism. Legal Pluralism and Critical Social Analysis, 1–29. https://doi.org/10.1080/27706869.2024.2372898
Umanailo, H. A., Franklin, P. J., & Waani, J. O. (2017). Perkembangan pusat kota Ternate (Studi Kasus: Kecamatan Ternate Tengah). Spasial, 4(3), 222–233.
Wang, Q., Wang, H., Chang, R., Zeng, H., & Bai, X. (2022). Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China. Ecological Modelling, 464, 109850. https://doi.org/10.1016/j.ecolmodel.2021.109850
Xing, W., Qian, Y., Guan, X., Yang, T., & Wu, H. (2020). A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation. Computers & Geosciences, 137, 104430. https://doi.org/10.1016/j.cageo.2020.104430
Yaagoubi, R., Lakber, C.-E., & Miky, Y. (2024). A comparative analysis on the use of a cellular automata Markov chain versus a convolutional LSTM model in forecasting urban growth using sentinel 2A images. Journal of Land Use Science, 19(1), 258–277. https://doi.org/10.1080/1747423X.2024.2403789
Yuliantina, N., Mulyana, A., Wildayana, E., & Lionardo, A. (2024). Economic impact of land use change on rice paddy farmers in Palembang city Indonesia. Wseas Transactions on Environment and Development, 20, 546–561. https://doi.org/10.37394/232015.2024.20.53
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Heinrich Rakuasa, Min Xu, Chunxiang Cao, Bhola Nath Dhakal (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

