Spatial ecological determinants of infectious diseases using National Health Insurance data: A multivariate canonical correlation analysis

Authors

  • Rafli Akbar Ramadhan Universitas Pertahanan RI, Indonesia Author
  • Purnomo Husnul Khotimah National Research and Innovation Agency (BRIN), Indonesia Author https://orcid.org/0000-0001-9916-6323
  • Rifani Bhakti Natari National Research and Innovation Agency (BRIN), Indonesia Author
  • Dianadewi Riswantini National Research and Innovation Agency (BRIN), Indonesia Author
  • Devi Munandar National Research and Innovation Agency (BRIN), Indonesia Author
  • Muh. Hafizh Izzaturrahim National Research and Innovation Agency (BRIN), Indonesia Author

DOI:

https://doi.org/10.58524/jgsa.v1i3.56

Keywords:

Canonical Correlation, Climate, Environment, Infectious diseases, National Health Insurance (BPJS)

Abstract

Uncertain climate change and population growth, which increase every year, constitute a varied lifestyle that can escalate the incidence of some infectious diseases. In West Java, the incident of dengue hemorrhagic fever (DHF), malaria, and pneumonia, along with the number of claims under National Health Insurance (BPJS) for these diseases, increased in 2022. This research aims to explore the relationship between ecological factors and the incidence of infectious diseases using multivariate canonical correlation analysis. The response variables are the incidence of DHF, malaria, and pneumonia based on disease-related visits to healthcare facilities captured in the BPJS data sample. The ecological factors used as explanatory variables include population size, average humidity, average rainfall, average temperature, the amount of waste transported to landfills per ton, and the percentage of households with access to adequate sanitation. The results showed a high correlation between ecology and disease incidence. Based on canonical loading and cross loading, the ecological factors that significantly contribute to disease incidence are population, average rainfall, average temperature, and the amount of waste transported to landfills per ton. Statistically, reduction in waste sent to landfills can decrease the incidence of DHF, malaria, and pneumonia. Reduction in population can reduce disease incidence, and decrease in temperature can lower disease incidence. Meanwhile, increase in rainfall can also reduce disease incidence. Therefore, efforts to control population growth, improve access to proper sanitation, and implement effective waste management can have a positive impact on reducing the incidence of infectious diseases in West Java. Therefore, efforts to control the population, improve access to proper sanitation, and effective waste management can have a positive impact on reducing infectious disease incidence in West Java.

Downloads

Download data is not yet available.

References

Abdullah, N. A. M. H., Dom, N. C., Salleh, S. A., Salim, H., & Precha, N. (2022). The association between dengue case and climate: A systematic review and meta-analysis. One Health, 15, 100452. https://doi.org/10.1016/j.onehlt.2022.100452

Ahmed, T., Hyder, M. Z., Liaqat, I., & Scholz, M. (2019). Climatic conditions: conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues. International Journal of Environmental Research and Public Health, 16(17), 3165. https://doi.org/10.3390/ijerph16173165

Al-Osaimi, H. M., Kanan, M., Marghlani, L., Al-Rowaili, B., Albalawi, R., Saad, A., Alasmari, S., Althobaiti, K., Alhulaili, Z., Alanzi, A., Alqarni, R., Alsofiyani, R., & Shrwani, R. (2024). A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Human Vaccines & Immunotherapeutics, 20(1), 2337985. https://doi.org/10.1080/21645515.2024.2337985

Amorosi, L., Padellini, T., Puerto, J., & Valverde, C. (2024). A mathematical programming approach to sparse canonical correlation analysis. Expert Systems with Applications, 237, 121293. https://doi.org/10.1016/j.eswa.2023.121293

Asbah, M. F., & Safitri, D. (2019). Penentuan koefisien korelasi kanonik dan interpretasi fungsi kanonik multivariat. Jurnal Gaussian, 2(2), 119–128. https://doi.org/10.14710/j.gauss.2.2.119%20-%20128

de Claro, V., Lava, J. B., Bondoc, C., & Stan, L. (2024). The role of local health officers in advancing public health and primary care integration: Lessons from the ongoing universal health coverage reforms in the Philippines. BMJ Global Health, 9(1), e014118. https://doi.org/10.1136/bmjgh-2023-014118

de Souza Fernandes Duarte, E., Lucio, P. S., Costa, M. J., Salgueiro, V., Salgado, R., Potes, M., Hoelzemann, J. J., & Bortoli, D. (2024). Pollutant-meteorological factors and cardio-respiratory mortality in Portugal: Seasonal variability and associations. Environmental Research, 240(Pt 2), 117491. https://doi.org/10.1016/j.envres.2023.117491

Frima Aji Umargani, N. : 18106010014. (2022). Perbandingan analisis korelasi kanonik antara metode klasik dan robust (estimasi m) (studi kasus: pengaruh hubungan perubahan iklim dengan penyakit malaria dan dbd di indonesia tahun 2020) [Thesis, UIN Sunan Kalijaga Yogyakarta].

He, Q., Liu, Y., Yin, P., Gao, Y., Kan, H., Zhou, M., Chen, R., & Li, Y. (2023). Differentiating the impacts of ambient temperature on pneumonia mortality of various infectious causes: A nationwide, individual-level, case-crossover study. EBioMedicine, 98, 104854. https://doi.org/10.1016/j.ebiom.2023.104854

Komara, E., Wahyuningsih, N. E., & Setiani, O. (2024). Hubungan cuaca dan kepadatan penduduk dengan kejadian DBD: Literature review: Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 7(4), 864–870. https://doi.org/10.56338/mppki.v7i4.5172

Kumar, D. V. (2024). Climate change impacts on human health. Current Research in Medical Sciences, 3(1), 1–9. https://www.pioneerpublisher.com/crms/article/view/633

Lebedeva, L., & Shkuropadska, D. (2024). Resilience of EU healthcare systems. Foreign Trade: Economics, Finance, Law, 133(2), 120–133. https://doi.org/10.31617/3.2024(133)07

Lydia H V Franklinos, MSc, Prof Kate E Jones, PhD, David W Redding, PhD, & Prof Ibrahim Abubakar, PhD. (2019). The effect of global change on mosquito-borne disease. The Lancet Infectious Diseases, 19(9), e302–e312. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(19)30161-6/abstract

Oliveira, J. B., Murari, T. B., Nascimento Filho, A. S., Saba, H., Moret, M. A., & Cardoso, C. A. L. (2023). Paradox between adequate sanitation and rainfall in dengue fever cases. Science of The Total Environment, 860, 160491. https://doi.org/10.1016/j.scitotenv.2022.160491

Osborne, A. J., Bierzynska, A., Colby, E., Andag, U., Kalra, P. A., Radresa, O., Skroblin, P., Taal, M. W., Welsh, G. I., Saleem, M. A., & Campbell, C. (2024). Multivariate canonical correlation analysis identifies additional genetic variants for chronic kidney disease. Npj Systems Biology and Applications, 10(1), 28. https://doi.org/10.1038/s41540-024-00350-8

Oyarzún G, M., Lanas Z, F., Wolff R, M., & Quezada L, A. (2021). The impact of climate change on health. Revista Medica De Chile, 149(5), 738–746. https://doi.org/10.4067/s0034-98872021000500738

Purwadi, J., Gumelar, B., Widiantoro, T., & Ningsih, Z. N. (2024). Canonical correlation analysis of economic growth and unemployment rate. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 18(2), 1273–1282. https://doi.org/10.30598/barekengvol18iss2pp1273-1282

Sherry, A., & Henson, R. K. (2005). Conducting and interpreting canonical correlation analysis in personality research: A user-friendly primer. Journal of Personality Assessment, 84(1), 37–48. https://doi.org/10.1207/s15327752jpa8401_09

Siti Rahmawati Hindo, Puridewi, A. E., Aulia Ananda Yuhana, Muhajir, M., S Si, Mahasiswa Jurusan Statistika, Dosen Program, Studi Statistika, Fakultas Matematika, Ilmu, D., & Pengetahuan Alam. (2018). Analisis hubungan tingkatan status pneumonia pada balita dan indikator lingkungan hidup sehat di indonesia menggunakan korelasi kanonikal. Unpublished. https://doi.org/10.13140/RG.2.2.21075.89121

Viyana, A. S. (2019). Penerapan Analisis Korelasi Kanonik Untuk Melihat Hubungan Iklim dengan Kejadian DBD dan ISPA Bukan Pneumonia di Kota Medan Tahun 2015-2017 [Thesis, Universitas Sumatera Utara]. https://repositori.usu.ac.id/handle/123456789/26614

Wei, K., Kong, W., & Wang, S. (2021). An improved multi-task sparse canonical correlation analysis of imaging genetics for detecting biomarkers of alzheimer’s disease. IEEE Access, 9, 30528–30538. https://doi.org/10.1109/ACCESS.2021.3059520

Weinberger, S. E. (2016). Curbing firearm violence: Identifying a specific target for physician action. Annals of Internal Medicine, 165(3), 221–222. https://doi.org/10.7326/M16-0968

Wickramasinghe, N. D. (2019). Canonical correlation analysis: an introduction to a multivariate statistical analysis. Journal of the College of Community Physicians of Sri Lanka, 25(1), 37. https://doi.org/10.4038/jccpsl.v25i1.8204

Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, 220, 117065. https://doi.org/10.1016/j.neuroimage.2020.117065

Downloads

Published

2025-12-01

How to Cite

Rafli Akbar Ramadhan, Husnul Khotimah, . P., Rifani Bhakti Natari, Dianadewi Riswantini, Devi Munandar, & Muh. Hafizh Izzaturrahim. (2025). Spatial ecological determinants of infectious diseases using National Health Insurance data: A multivariate canonical correlation analysis. Journal of Geospatial Science and Analytics, 1(3), 203-214. https://doi.org/10.58524/jgsa.v1i3.56