Spatial analysis-based risk identification for malaria elimination efforts in Papua

Authors

  • Muhammad Iqbal Maulana Diponegoro University Author
  • Ida Fransiska Pandiangan Community Nutrition IPB University Author
  • Ridho Saputra Social Antropology University of Indonesia Author

DOI:

https://doi.org/10.58524/jgsa.v1i1.8

Keywords:

GIS, Malaria Risk, Model Builder, Remote Sensing, Weighted Overlay

Abstract

Papua is a region grappling with various health issues, particularly malaria. A study revealed that a staggering 92% of national malaria cases are concentrated in Papua. This poses a significant challenge given the Sustainable Development Goals (SDGs) target of malaria elimination by 2030. A risk analysis was conducted to spatially identify the distribution of malaria. This approach employed Geographic Information Systems (GIS) and Remote Sensing, utilizing the Model Builder and weighted overlay methods. The analysis indicated that 91.77% of the region is at a moderate risk, while 0.33% is at a high risk. Targeted interventions are imperative for areas classified as moderate to high risk. Comprehensive prevention strategies must address core challenges such as early detection, case management, treatment, and improved access to healthcare facilities.

Downloads

Download data is not yet available.

References

Ahsan Afzal Wani, Bikram Singh Bali, Sareer Ahmad, Umar Nazir, & Gowhar Meraj. (2022). Geospatial Modeling in Landslide Hazard Assessment. In Geospatial Modeling for Environmental Management (1st Editio, p. 13). https://www.taylorfrancis.com/chapters/edit/10.1201/9781003147107-8/geospatial modeling-landslide-hazard-assessment-ahsan-afzal-wani-bikram-singh-bali-sareer-ahmad umar-nazir-gowhar-meraj

Centers for Disease Control and Prevention. (2017). Centers for Disease Control and Prevention About Malaria Biology. https://www.cdc.gov/malaria/about/biology/mosquitoes

Chauhan, J., & Ghimire, S. (2023). A comprehensive geospatial analysis for optimal waste disposal site selection: integrating environmental, social and economic factors. Kathmandu University Journal of Science Engineering and Technology, 17(2). https://doi.org/10.70530/kuset.v17i2.141

Dewa, D. D., Buchori, I., &, & Sejati, A. W. (2022). Assessing land use/land cover change diversity and its relation with urban dispersion using Shannon Entropy in the Semarang Metropolitan Region, Indonesia. Geocarto International, https://doi.org/https://doi.org/10.1080/10106049.2022.2046871

Esa. (2024). Land Surface Temperature. European Space Agency. https//climate.esa.int/en/projects/land-surface-temperature/

Faria de Deus, R., Tenedório, J. A., &, & Rocha, J. (2021). Modelling Land-Use and Land-Cover Changes: A Hybrid Approach to a Coastal Area. Methods and Applications of Geospatial Technology in Sustainable Urbanism, 46. https://doi.org/10.4018/978-1-7998-2249-3.ch003

Ferrao, J. L., Niquisse, S., Mendes, J. M., & Painho, M. (2018). Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. International Journal of Environmental Research and Public Health, 15(4), 1–15. https://doi.org/10.3390/ijerph15040795

Kemenkes RI. (2023). Rencana Aksi Nasional Percepatan Eliminasi Malaria 2020-2026. Direktorat Jenderal Pencegahan Dan Pengendalian Penyakit, 2026, 55–77.

Kementerian Kesehatan. (2023). Survei Kesehatan Indonesia (SKI) 2023 Dalam Angka.

Kementerian PPN/Bappenas.(2022). Rencana Induk Percepatan Pembangunan Papua (RIPPP)

Maantay, J., Winner, A., & Maroko, A. (2022). Geospatial Analysis of the Urban Health Environment. Geospatial Technology for Human Well-Being and Health, 151–183. https://link.springer.com/chapter/10.1007/978-3-030-71377-5_9

Maji, K., & Sarkar, S. (2019). Generation of spatial database for the study of socio-economic development in Bankura district, West Bengal: A geospatial approach. Transactions, 41(1), 21.

Marsh, A. T. M., Parker, R., Anna, L., Garcia, H., Techapinyawat, L., Lee, J., & Zhang, H. (2024). Equitable stormwater utility fees : an integrated analysis of environmental , socioeconomic and infrastructure factors at the community scale OPEN ACCESS Equitable stormwater utility fees : an integrated analysis of environmental , socioeconomic and infra. Environmental Research Infrastructure and Sustainability.

Mitchell, D. E. (2019). Visualizing the Big Three: geospatial interpolation of heavy metal sediment contamination in Lake Erie.

Oliveira Trindade, B., Brandão, G. R., & Bueno Motter, S. (2023). Geospatial Analysis of Accessibility to Surgical Care, a Brazilian Local Perspective. World Journal of Sugery, 47(4), 887–894. https://doi.org/https://doi.org/10.1007/s00268-023-06892-y

Samsonov, T. (2023). Spatial analysis and modelling. In The Routledge Handbook of Geospatial Technologies and Society (1st Editio, p. https://www.taylorfrancis.com/chapters/edit/10.4324/9780367855765-23/spatial analysis-modelling-timofey-samsonov

Sejati, A. W., Nur, S., Kusuma, A., Rahayu, S., Buchori, I., Rahayu, K., Muzaki, A. J., & Basuki, Y. (2023). Flood Hazard Risk Assessment based on Multi- criteria Spatial Analysis GIS as Input for Spatial Planning Policies in Tegal Regency , Indonesia. Geographica Pannonica, 27(1), 50 68. https://doi.org/10.5937/gp27-40927

SentiWiki. (2024). S2 Applications. Copernicus. https://sentiwiki.copernicus.eu/web/s2 applications

Supriyanto, D., & Bachtiar, A. (2019). Achievement of Malaria Control Program in West 2012 2016. 5th International Conference on Public Health, 89–100. https://doi.org/10.26911/theicph.2019.01.25

Swayam Vid, & Shanti Kumari. (2022). Climate Change Studies, Permanent Forest Observational Plots and Geospatial Modeling. In Geospatial Modeling for Environmental Management (1st Editio, p. 18). https://www.taylorfrancis.com/chapters/edit/10.1201/9781003147107 15/climate-change-studies-permanent-forest-observational-plots-geospatial-modeling swayam-vid-shanti-kumari

Petro, D. A., Shaban, N., Aaron, S., Chacky, F., Lazaro, S., Boni, M. F., & Ishengoma, D. S. (2024, November). Geospatial analysis of malaria burden in Kagera region, northwestern Tanzania using health facility and community survey data. In Open Forum Infectious Diseases (Vol. 11, No. 11, p. ofae609). US: Oxford University Press. https://doi.org/10.1093/ofid/ofae609

Wan, Z. (2024). MOD11A1 v061. USGS. https://lpdaac.usgs.gov/products/mod11a1v061/

Downloads

Published

2025-03-30

How to Cite

Maulana, M. I., Ida Fransiska Pandiangan, & Ridho Saputra. (2025). Spatial analysis-based risk identification for malaria elimination efforts in Papua. Journal of Geospatial Science and Analytics, 1(1), 51-66. https://doi.org/10.58524/jgsa.v1i1.8