Spatial modeling of the open unemployment rate in West Java using eigenvector spatial filtering and spatially varying coefficients
DOI:
https://doi.org/10.58524/jgsa.v1i2.88Keywords:
ESF, Open Unemployment Rate, Spatial Regression, SVC, West JavaAbstract
Spatial modeling serves as a crucial approach in examining the Open Unemployment Rate (OUR) as it accommodates spatial dependence and regional heterogeneity. This study aims to model the OUR at the regency/city level in West Java Province for the 2020–2024 period using a spatial regression approach, by combining the Eigenvector Spatial Filtering (ESF) and Spatially Varying Coefficients (SVC) methods through the spmoran package in R. The ESF model is employed to reduce spatial autocorrelation in residuals by incorporating eigenvectors derived from a spatial weights matrix, while the SVC model captures local variations in the influence of explanatory variables on OUR across regions. The results reveal that the best-performing models based on Moran’s I is ESF respectively, for each year. Several variables such as Gross Regional Domestic Product (GRDP) per capita at constant 2010 prices, number of poor people, and elevation were consistently significant and influenced regional variations in OUR. Spatial visualization of model predictions indicates a concentration of high OUR values in the northern and western regions of West Java, such as Bekasi City, Karawang Regency, and Depok City, while the southern and eastern regions, such as Pangandaran and Tasikmalaya Regencies, tended to have lower OUR values. These findings underscore the importance of spatial-based policy interventions in the employment sector.
Downloads
References
Anselin, L. (2021). Spatial models in econometric research. In Oxford Research Encyclopedia of Economics and Finance. Retrieved December 5, 2025, from https://oxfordre.com/economics/display/10.1093/acrefore/9780190625979.001.0001/acrefore-9780190625979-e-643
Azhari, R., As’ad, M. U., Karim, A. T. B. A., Jermsittiparsert, K., & Umam, R. (2019). Benchmarks of authority in Suruhanjaya Perkhidmatan Awam and the commission of state civil services (KASN). International Journal of Innovation, Creativity and Change, 8(8), 351–362.
Brundage, M., Chang, Q., li, Y., Arinez, J., & Xiao, G. (2014). Utilizing energy opportunity windows and energy profit bottlenecks to reduce energy consumption per part for a serial production line. IEEE International Conference on Automation Science and Engineering, 2014, 461–466. https://doi.org/10.1109/CoASE.2014.6899366
Ewing, R., & Hamidi, S. (2015). Compactness versus Sprawl: A review of recent evidence from the United States. Journal of Planning Literature, 30(4), 413–432. https://doi.org/10.1177/0885412215595439
Fang, T., Chen, Y., Tan, H., Cao, J., Liao, J., & Huang, L. (2019). Flood risk evaluation in the middle reaches of the Yangtze river based on eigenvector spatial filtering Poisson regression. Water, 11(10), 1969. https://doi.org/10.3390/w11101969
Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. https://doi.org/10.1080/24694452.2017.1352480
Griffith, D. A., Chun, Y., & Kim, H. (2022). Spatial autocorrelation informed approaches to solving location–allocation problems. Spatial Statistics, 50, 100612. https://doi.org/10.1016/j.spasta.2022.100612
Hartono, H., Anwar, H., Umam, R., & Takahashi, H. (2024). An unsupervised machine learning algorithm approach using K-means clustering for optimizing surface wave filtering in seismic reflection data. Journal of Natural Sciences and Mathematics Research, 10(1), 114–127. https://doi.org/10.21580/jnsmr.v10i1.22399
He, R., Zhang, C., Xiao, Y., Lu, X., Zhang, S., & Liu, Y. (2024). Deep spatio-temporal 3D dilated dense neural network for traffic flow prediction. Expert Systems with Applications, 237(April 2023), 121394. https://doi.org/10.1016/j.eswa.2023.121394
Kim, D., Šamonil, P., Jeong, G., Tejnecký, V., Drábek, O., Hruška, J., & Park, S. J. (2019). Incorporation of spatial autocorrelation improves soil–landform modeling at A and B horizons. CATENA, 183, 104226. https://doi.org/10.1016/j.catena.2019.104226
LeSage, J. P., & Fischer, M. M. (2016). Spatial regression-based model specifications for exogenous and endogenous spatial interaction. Advances in Spatial Science, 15–36. https://ideas.repec.org//h/spr/adspcp/978-3-319-30196-9_2.html
LeSage, J. P., & Pace, R. K. (2018). Spatial econometric Monte Carlo studies: Raising the bar. Empirical Economics, 55(1), 17–34. https://doi.org/10.1007/s00181-017-1330-6
Li, Z., & Fotheringham, A. S. (2020). Computational improvements to multi-scale geographically weighted regression. International Journal of Geographical Information Science, 34(7), 1378–1397. https://doi.org/10.1080/13658816.2020.1720692
Muawanah, M., Muhamad, Y., Syamsul, H., Iskandar, T., Muhamad, S., Umam, R., & Jermsittiparsert, K. (2020). Career management policy, career development, and career information as antecedents of employee satisfaction and job performance. International Journal of Innovation, Creativity and Change, 11(6), 458–482.
Murakami, D. (2017a). Gaussian spatial regression using the spmoran package: Case study examples (Version 12). arXiv. https://doi.org/10.48550/ARXIV.1703.04467
Murakami, D. (2017b). Gaussian spatial regression using the spmoran package: Case study examples (Version 12). arXiv. https://doi.org/10.48550/ARXIV.1703.04467
Murakami, D. (2024). Gaussian spatial regression using the spmoran package: Case study examples (No. arXiv:1703.04467). arXiv. https://doi.org/10.48550/arXiv.1703.04467
Murakami, D., & Griffith, D. A. (2015). Random effects specifications in eigenvector spatial filtering: A simulation study. Journal of Geographical Systems, 17(4), 311–331. https://doi.org/10.1007/s10109-015-0213-7
Murakami, D., & Griffith, D. A. (2020). A memory-free spatial additive mixed modeling for big spatial data. Japanese Journal of Statistics and Data Science, 3(1), 215–241. https://doi.org/10.1007/s42081-019-00063-x
Murakami, D., Yoshida, T., Seya, H., Griffith, D. A., & Yamagata, Y. (2017). A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68–89. https://doi.org/10.1016/j.spasta.2016.12.001
Nosek, V., & Netrdová, P. (2017). What values of Moran’s I and Theil index decomposition really mean under different conditions: On the issue of interpretation. Letters in Spatial and Resource Sciences, 10(2), 149–159. https://doi.org/10.1007/s12076-016-0178-2
Purwaningsih, T., Inderanata, R. N., Pradana, S. C., Snani, A., & Sulaiman, S. (2022). Factors influencing open unemployment rates: A spatial regression analysis. Science in Information Technology Letters, 3(1), 10–21. https://doi.org/10.31763/sitech.v3i1.1202
Sriyakul, T., Umam, R., & Jermsittiparsert, K. (2019). Internal supply chain integration and operational performance of Indonesian fashion industry firms: A supplier to buyer approach. Humanities & Social Sciences Reviews, 7(2), 479–486.
Surahman, A., Rusnaeni, N., & Lubis, I. (2023). Pengaruh dari fluktuasi harga emas, tingkat pengangguran dan harga minyak bumi terhadap tingkat inflasi di indonesia. Jurnal Sekretari Universitas Pamulang, 10(1), 137. https://doi.org/10.32493/skr.v10i1.28431
Syazali, M., Putra, F. G., Rinaldi, A., Utami, L. F., Widayanti, W., Umam, R., & Jermsittiparsert, K. (2019). Partial correlation analysis using multiple linear regression: Impact on business environment of digital marketing interest in the era of industrial revolution 4.0. Management Science Letters, 9, 1875–1886.
Takele, C., & Iticha, B. (2020). Use of infrared spectroscopy and geospatial techniques for measurement and spatial prediction of soil properties. Heliyon, 6(10), e05269. https://doi.org/10.1016/j.heliyon.2020.e05269
Wisnu Dwi Andriyanto & Ima Amaliah. (2024). Pengaruh tingkat pengangguran terbuka, tingkat angka partisipasi kerja dan jumlah penduduk miskin terhadap pertumbuhan ekonomi di indonesia tahun 2013-2022. Bandung Conference Series: Economics Studies, 4(1), 301–306. https://doi.org/10.29313/bcses.v4i1.11823
Zhu, B., Wang, Z., Li, L., Yan, X., Hu, X., & Li, L. (2024). Spatio-temporal feature attention fusion for fault detection in complex industrial processes. 2024 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA), 1–8. https://doi.org/10.1109/ISPCE-ASIA64773.2024.10756266
Downloads
Published
Issue
Section
License
Copyright (c) 2025 I Putu Aditya Brama Putra Cakra Negara, Rofiqul Umam, Alok Shukla (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

