Geospatial analysis of factors affecting index of rice harvest success in West Java using INLA-based Bayesian models

Authors

  • Novrizal Ramdhani Indonesia Defense University Author
  • Glenaldo Achmad Zhafran Evito University of Tsukuba Author

DOI:

https://doi.org/10.58524/jgsa.v1i3.89

Keywords:

Bayes , BYM2 , INLA , Spatial , Rice Harvest Index

Abstract

Rice production during the 2012-2022 period tends to decline. Many factors lead to a decline in production, one of which is the low on potential of rice success. This issue is an obstacle to achieve food security. West Java is the third largest rice producing province in Indonesia. For this reason, the aim of this research is to establish the potential value of harvest success in West Java Province and form a spatial Bayes regression model of the potential value of harvest success of rice plants in West Java whose inference using the Integrated Nested Laplace Approximation (INLA) approach. The spatial Bayes regression model created is a linear mixed model which includes spatial random effects using the BYM2 method. The explanatory variables of the model are the number of farmer economic institutions, the number of agricultural extension workers, the number of farmer groups, the human development index, and the number of disaster events from 27 districts/cities in West Java with the potential value of harvest success as the response variable. The results of the spatial model show that the variables of the number of farmer economic institutions and the number of farmer groups have a significant influence on the potential value of harvest success. From the results of spatial mapping, it can be seen that there are neighborhood relationships that influence the value of potential harvest success where the eastern region in West Java tends to have a higher probability of harvest success.

Downloads

Download data is not yet available.

References

Abdullah, N. A. M. H., Dom, N. C., Salleh, S. A., Salim, H., & Precha, N. (2022). The association between dengue case and climate: A systematic review and meta-analysis. One Health, 15, 100452. https://doi.org/10.1016/j.onehlt.2022.100452

Ahmed, T., Hyder, M. Z., Liaqat, I., & Scholz, M. (2019). Climatic conditions: conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues. International Journal of Environmental Research and Public Health, 16(17), 3165. https://doi.org/10.3390/ijerph16173165

Al-Osaimi, H. M., Kanan, M., Marghlani, L., Al-Rowaili, B., Albalawi, R., Saad, A., Alasmari, S., Althobaiti, K., Alhulaili, Z., Alanzi, A., Alqarni, R., Alsofiyani, R., & Shrwani, R. (2024). A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Human Vaccines & Immunotherapeutics, 20(1), 2337985. https://doi.org/10.1080/21645515.2024.2337985

Amorosi, L., Padellini, T., Puerto, J., & Valverde, C. (2024). A mathematical programming approach to sparse canonical correlation analysis. Expert Systems with Applications, 237, 121293. https://doi.org/10.1016/j.eswa.2023.121293

Asbah, M. F., & Safitri, D. (2019). Penentuan koefisien korelasi kanonik dan interpretasi fungsi kanonik multivariat. Jurnal Gaussian, 2(2), 119–128. https://doi.org/10.14710/j.gauss.2.2.119%20-%20128

de Claro, V., Lava, J. B., Bondoc, C., & Stan, L. (2024). The role of local health officers in advancing public health and primary care integration: Lessons from the ongoing universal health coverage reforms in the Philippines. BMJ Global Health, 9(1), e014118. https://doi.org/10.1136/bmjgh-2023-014118

de Souza Fernandes Duarte, E., Lucio, P. S., Costa, M. J., Salgueiro, V., Salgado, R., Potes, M., Hoelzemann, J. J., & Bortoli, D. (2024). Pollutant-meteorological factors and cardio-respiratory mortality in Portugal: Seasonal variability and associations. Environmental Research, 240(Pt 2), 117491. https://doi.org/10.1016/j.envres.2023.117491

Frima Aji Umargani, N. : 18106010014. (2022). Perbandingan analisis korelasi kanonik antara metode klasik dan robust (estimasi m) (studi kasus: pengaruh hubungan perubahan iklim dengan penyakit malaria dan dbd di indonesia tahun 2020) [Thesis, UIN Sunan Kalijaga Yogyakarta].

He, Q., Liu, Y., Yin, P., Gao, Y., Kan, H., Zhou, M., Chen, R., & Li, Y. (2023). Differentiating the impacts of ambient temperature on pneumonia mortality of various infectious causes: A nationwide, individual-level, case-crossover study. EBioMedicine, 98, 104854. https://doi.org/10.1016/j.ebiom.2023.104854

Komara, E., Wahyuningsih, N. E., & Setiani, O. (2024). Hubungan cuaca dan kepadatan penduduk dengan kejadian DBD: Literature review: Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 7(4), 864–870. https://doi.org/10.56338/mppki.v7i4.5172

Kumar, D. V. (2024). Climate change impacts on human health. Current Research in Medical Sciences, 3(1), 1–9. https://www.pioneerpublisher.com/crms/article/view/633

Lebedeva, L., & Shkuropadska, D. (2024). Resilience of EU healthcare systems. Foreign Trade: Economics, Finance, Law, 133(2), 120–133. https://doi.org/10.31617/3.2024(133)07

Lydia H V Franklinos, MSc, Prof Kate E Jones, PhD, David W Redding, PhD, & Prof Ibrahim Abubakar, PhD. (2019). The effect of global change on mosquito-borne disease. The Lancet Infectious Diseases, 19(9), e302–e312. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(19)30161-6/abstract

Oliveira, J. B., Murari, T. B., Nascimento Filho, A. S., Saba, H., Moret, M. A., & Cardoso, C. A. L. (2023). Paradox between adequate sanitation and rainfall in dengue fever cases. Science of The Total Environment, 860, 160491. https://doi.org/10.1016/j.scitotenv.2022.160491

Osborne, A. J., Bierzynska, A., Colby, E., Andag, U., Kalra, P. A., Radresa, O., Skroblin, P., Taal, M. W., Welsh, G. I., Saleem, M. A., & Campbell, C. (2024). Multivariate canonical correlation analysis identifies additional genetic variants for chronic kidney disease. Npj Systems Biology and Applications, 10(1), 28. https://doi.org/10.1038/s41540-024-00350-8

Oyarzún G, M., Lanas Z, F., Wolff R, M., & Quezada L, A. (2021). The impact of climate change on health. Revista Medica De Chile, 149(5), 738–746. https://doi.org/10.4067/s0034-98872021000500738

Purwadi, J., Gumelar, B., Widiantoro, T., & Ningsih, Z. N. (2024). Canonical correlation analysis of economic growth and unemployment rate. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 18(2), 1273–1282. https://doi.org/10.30598/barekengvol18iss2pp1273-1282

Sherry, A., & Henson, R. K. (2005). Conducting and interpreting canonical correlation analysis in personality research: A user-friendly primer. Journal of Personality Assessment, 84(1), 37–48. https://doi.org/10.1207/s15327752jpa8401_09

Siti Rahmawati Hindo, Puridewi, A. E., Aulia Ananda Yuhana, Muhajir, M., S Si, Mahasiswa Jurusan Statistika, Dosen Program, Studi Statistika, Fakultas Matematika, Ilmu, D., & Pengetahuan Alam. (2018). Analisis hubungan tingkatan status pneumonia pada balita dan indikator lingkungan hidup sehat di indonesia menggunakan korelasi kanonikal. Unpublished. https://doi.org/10.13140/RG.2.2.21075.89121

Viyana, A. S. (2019). Penerapan Analisis Korelasi Kanonik Untuk Melihat Hubungan Iklim dengan Kejadian DBD dan ISPA Bukan Pneumonia di Kota Medan Tahun 2015-2017 [Thesis, Universitas Sumatera Utara]. https://repositori.usu.ac.id/handle/123456789/26614

Wei, K., Kong, W., & Wang, S. (2021). An improved multi-task sparse canonical correlation analysis of imaging genetics for detecting biomarkers of alzheimer’s disease. IEEE Access, 9, 30528–30538. https://doi.org/10.1109/ACCESS.2021.3059520

Weinberger, S. E. (2016). Curbing firearm violence: Identifying a specific target for physician action. Annals of Internal Medicine, 165(3), 221–222. https://doi.org/10.7326/M16-0968

Wickramasinghe, N. D. (2019). Canonical correlation analysis: an introduction to a multivariate statistical analysis. Journal of the College of Community Physicians of Sri Lanka, 25(1), 37. https://doi.org/10.4038/jccpsl.v25i1.8204

Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, 220, 117065. https://doi.org/10.1016/j.neuroimage.2020.117065

Downloads

Published

2025-12-31

How to Cite

Novrizal Ramdhani, & Glenaldo Achmad Zhafran Evito. (2025). Geospatial analysis of factors affecting index of rice harvest success in West Java using INLA-based Bayesian models. Journal of Geospatial Science and Analytics, 1(3), 225-234. https://doi.org/10.58524/jgsa.v1i3.89